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The cellular mRNA decay machinery plays a major role in

regulating the quality and quantity of gene expression in cells.

This machinery involves multiple enzymes and pathways that

converge to promote the exonucleolytic decay of mRNAs. The

transcripts made by RNA viruses are susceptible to

degradation by this machinery and, in fact, can be actively

targeted. Thus, to maintain gene expression and replication,

RNA viruses have evolved a number of strategies to avoid and/

or inactivate aspects of the cellular mRNA decay machinery.

Recent work uncovering the mechanisms used by RNA viruses

to maintain the stability of their transcripts is described below.
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Introduction
The cellular mRNA decay machinery plays a major role in

influencing gene expression in eukaryotic cells. Differ-

ential mRNA stability, for example, is a highly regulated

process that accounts for approximately 20–50% of the

changes in gene expression levels observed in cells in

response to various stimuli [1�,2��]. The quality of RNAs

is also constantly monitored by the cellular RNA decay

machinery. Transcripts containing premature termination

codons, lacking a termination codon, or containing stalled

ribosomes are rapidly degraded by the cell [3�]. Further-

more, unwanted transcripts that arise from intergenic

transcription and introns are generally rapidly degraded

[4�]. The transcripts produced by RNA viruses are apt to

be placed in this ‘unwanted’ category by the cellular RNA

decay machinery for several reasons. These viral tran-

scripts often lack a nuclear experience, thus their mes-

senger ribonucleoprotein (mRNP) organization is likely

different than that of a cellular mRNA. Some viral tran-

scripts are uncapped and/or lack a poly(A) tail and thus

could be recognized as incomplete or malformed mRNAs.

Some viral mRNAs contain multiple open reading frames
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and thus may be recognized as containing a premature

termination codon. How viruses avoid surveillance by the

cellular mRNA decay machinery during infection is an

understudied area of virus–host interactions. The purpose

of this review is to highlight the fundamental pathways

and factors of the cellular mRNA decay machinery, dis-

cuss recent observations on how the transcripts made by

RNA viruses interface with them, and identify a variety of

issues for future consideration.

The cellular RNA decay machinery
The major pathways of mRNA decay in mammalian cells

are diagrammed in Figure 1. The first step in the decay of

most mRNAs is the shortening of the poly(A) tail, also

known as deadenylation [5]. There are multiple dead-

enylase enzymes in cells, including CCR4, CAF1, PARN

and PAN2/3 [6��,7]. Deadenylation is often the rate

limiting step in the decay of many mRNAs. Following

deadenylation, the decay of the body of the mRNA is

afforded by two exonucleolytic pathways. To be shuttled

into the 50-to-30 exonucleolytic decay pathway, the 30 end

of deadenylated mRNAs associates with the cytoplasmic

LSm1-7 complex and PAT1 initiates the recruitment of

factors to remove the m7Gppp cap from the 50 end [8].

There are at least two decapping enzymes in mammalian

cells — DCP2 and Nutd16 — which associate with a

variety of auxiliary factors (such as DCP1a and HDLS)

to effectively remove the 50 cap from deadenylated tran-

scripts [9��]. The process of decapping leaves a 50 mono-

phosphate, creating a substrate for the highly processive

50-to-30 exoribonuclease XRN1 [10��]. XRN1 then

degrades the transcript to mononucleotides. Many of

the factors in the 50-to-30 decay pathway can be found,

at least in part, in association with cytoplasmic processing

bodies (P-bodies) in cells [11].

For 30-to-50 decay, the deadenylated transcript is acted on

by the cytoplasmic exosome, a �400 kDa multi-protein

complex that contains a subunit (hDIS3/RRP44) which

possesses both RNase II-like hydrolytic exonucleolytic

and a PIN domain-mediated endonucleolytic activities

(although in humans the cytoplasmic form of hDIS3

(hDIS3L) does not retain an active endonuclease) [12].

The activity of the exosome is influenced by the SKI

complex (SKI2, 3 and 8) which contains helicase and

other activities [13�]. Following processive decay of the

majority of the body of the mRNA by the exosome, the 50

cap is removed from the small fragment by a scavenger

decapping activity (DCPS) [14].

Specialized RNA decay/surveillance pathways also exist

in cells (Figure 2). mRNA decay may be initiated by an
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Figure 1
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The major enzymes and pathways of cellular mRNA decay. As indicated by the ‘Start Here’ sign, the majority of mRNA degradation in eukaryotic cells

is initiated by poly(A) shortening. The four best characterized deadenylase enzymes (CCR4, CAF1, PAN2/3 and PARN) are shown. Following

deadenylation, the body of the mRNA is then degraded by one of two exonuclease pathways (or both acting in concert). The exosome complex

degrades mRNAs in a 30–50 direction (top panel). Exosome-mediated decay leaves a short RNA fragment with a 50 cap that gets removed by the

scavenger decapping activity DCPS. In the 50–30 decay pathway (bottom panel), the mRNA is first decapped by DCP2 or Nudt16 and then the body of

the mRNA is degraded by the XRN1 exoribonuclease. Many of the components of the 50–30 decay pathway can often be found associated in a

cytoplasmic granule referred to as the P-body.

Figure 2
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Alternative and specialized pathways of mRNA decay. Two of the major routes of alternative mRNA decay are highlighted. First, decay can be initiated

by endonucleolytic cleavage through the direct recruitment of endonucleases. These enzymes can interact directly with their target RNAs (e.g. PMR1,

RNase L), be recruited as part of the nonsense-mediated decay pathway (NMD) at a premature termination codon (Smg6 endonuclease), by stalled

ribosomes in the ‘no-go’ decay pathway by recruitment of the Dom34–Hbs1 complex, or by miRNAs directing Ago ‘slicer’ proteins of the RISC

complex to the transcript. Alternatively, the exosome can be recruited to the 30 end of malformed RNAs such as those lacking a translation termination

codon (non-stop decay) or onto transcripts with structured 30 ends by poly(A) or poly(U) tailing.
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endonucleolytic cleavage event through endonucleases

such as PMR1, IRE1, G3BP, SMG6, APE1 and

Zc3h12a/MCPIP [15]. The inducible RNase L protein

is also an endonuclease whose activity has been shown

to increase upon viral infection [16]. The RNA inter-

ference-associated decay pathway is also initiated by an

endonucleolytic cleavage event mediated by an argo-

naute protein in the RISC complex [17]. Nonsense

mediated decay shuttles targeted mRNAs into one or

more decay pathways, and involves a series of auxiliary

factors, in particular UPF1-3 and a series of SMG

proteins [18�]. The turnover of mRNAs that lack a

termination codon, referred to as nonstop mRNA decay,

is mediated through the SKI complex outlined above

[19�]. The decay of mRNAs with stalled ribosomes (no-

go decay), as well as the decay of nonfunctional 18S

rRNA, is mediated by the DOM34–Hbs1 complex [20].

The RNA deamination enzymes APOBEC3G and 3F

have also been shown to localize to P-bodies [21�],
suggesting that this form of RNA editing is also associ-

ated with RNA degradation in some fashion. Finally,

the decay of structured RNAs can be initiated by the

attachment of a short poly(A) or poly(U) stretch on the

30 end by a non-canonical poly(A/U) polymerase to

provide a landing pad for the exosome [22].
Figure 3
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The process of mRNA decay is highly regulated

(Figure 3). Numerous mRNA binding proteins have been

identified that destabilize mRNAs. Some of the best

characterized mRNA instability factors include TTP,

AUF1, and KSRP [23�,24,25]. Small RNA regulators such

as miRNAs can also regulate the stability of targeted

transcripts [26]. Major factors that stabilize mRNAs in-

clude HuR and PCBP2 proteins [27��,28]. Combinatorial

association of these factors with the targeted mRNA, in

association in some fashion with the translation machin-

ery and subcellular localization, likely prescribe the fate

of the transcript.

Strategies of RNA viruses to avoid
deadenylation
Given that poly(A) shortening is often the first and rate

limiting step in mRNA decay, RNA viruses likely have

developed ways to repress it or avoid it altogether. Several

families of RNA viruses, including flaviviruses, bunya-

viruses and arenaviruses, have evolved 30 terminal stem

loop structures reminiscent perhaps of those found on

non-polyadenylated histone mRNAs [29�] that maintain

the stability of the transcript while still affording translat-

ability. For RNA viruses that possess a 30 poly(A) tail on

their mRNAs, two strategies to evade deadenylation have
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ess. It can be promoted by the interaction of destabilizing factors such as

rs can serve to attract deadenylases as shown in the figure, or by

NAs can be selectively stabilized by the recruitment of specific proteins
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been uncovered to date. Poliovirus targets the deadeny-

lase PAN3, which is postulated to initiate deadenylation

of many cellular mRNAs before the transcript is handed

over to more processive deadenylases, for rapid degra-

dation during infection [30��]. Sindbis virus recruits the

cellular HuR protein to the 30 untranslated region (UTR)

of its transcripts which stabilizes the �60 base poly(A) tail

of these alphaviruses [31,32��]. Deletion of the high

affinity HuR binding site in the 30UTR of Sindbis virus

results in very unstable viral transcripts that become

effective substrates for cellular deadenylases [32��]. Ot-

her mechanisms could be used to stabilize the poly(A)

tail, including forming structures between the poly(A)

and internal sequences of viral transcripts as has been

shown for the abundant non-coding PAN mRNA made by

Kaposi’s sarcoma associated herpesvirus (KSHV) [33].

However, this and other mechanisms of repressing dead-

enylation have not been demonstrated to date for an RNA

virus.

Strategies of RNA viruses to avoid the
enzymes of the 50-to-30 mRNA decay pathway
A variety of evidence suggests that RNA viruses are

indeed subject to degradation by the 50–30 decay pathway.

Overexpression of isoforms of the XRN1 exoribonuclease

in mammalian or plant systems, for example, has been

shown to inhibit hepatitis C virus (HCV) or tomato bushy

stunt virus (TBSV) [34,35�]. The XRN1 exonuclease is

also required to generate a small subgenomic RNA

(sfRNA) as a decay intermediate that is observed during

infections with most, if not all, insect-borne flaviviruses

[36��,37��]. Overexpression of auxiliary factors associated

with the 50-to-30 decay pathway have also been associated

with the inhibition of viral growth — for example the

MOV10 P-body-associated helicase and human immuno-

deficiency virus (HIV) inhibition [38�]. Thus the need for

viruses to avoid the 50-to-30 mRNA decay pathway is

starting to move from theoretical considerations to a

well-documented reality.

Four strategies that can be associated with evasion of the

50-to-30 decay pathway have been identified to date. First,

poliovirus infection is associated with degradation of the

XRN1 exoribonuclease as well as the auxiliary decapping

factor DCP1a [30��]. This should severely limit the action

of this decay pathway during poliovirus infection. Second,

many viruses usurp 50-to-30 decay pathway factors and

disrupt the formation of P-bodies during infection. Brome

mosaic virus has been known for years to use the LSm1-7

complex as well as the auxiliary decay factor PAT1 to

promote its replication [39�]. More recently, HCV has

been also shown to hijack these same P-body components

along with the RCK/p54 helicase, to promote its trans-

lation and replication [40]. P-body disruption during in-

fection has clearly been documented in a number of RNA

virus infections, including flaviviruses and picornaviruses

[41–43]. Third, sequences and structures in the 50 UTR of
www.sciencedirect.com 
viral mRNAs may have evolved under pressure from the

50-to-30 decay pathway to provide some resistance. TBSV

passaged under the pressure of overexpressed XRN4p is,

for example, associated with the emergence of 50 UTR

variants and knock out of Xrn1 leads to viral RNA

recombination in a yeast model [34,44]. Since the activity

of cellular decapping enzymes varies depending on the

sequence context of the cap structure, such 50 UTR

variations can have a large potential impact on viral

resistance to this decay pathway. Finally, HCV usurps

the cellular factors miR-122 and Ago2 to stabilize its

RNAs via interactions near the 50 end [45��,46].

Strategies of RNA viruses to avoid the
exosome and the 30-to-50 mRNA decay
pathway
The association of aspects of the 30-to-50 decay pathway

with viral infections allowed the initial discovery (and

naming) of the SKI complex of proteins as ‘suppressors of

yeast killer virus’ [13�]. This observation, along with the

observation that non-polyadenylated RNA viruses all

possess large structured elements directly at their 30 ends

that can be inferred to protect viral transcripts from the

exosome [47], clearly imply that exosome-mediated

decay can have an impact on RNA virus infections.

However, additional insights into virus escape from exo-

some-based surveillance await future experimentation.

Strategies of RNA viruses to avoid and
interface with other RNA decay pathways and
regulatory factors
There are several studies which clearly demonstrate that

RNA viruses have also taken steps to avoid more special-

ized RNA decay pathways as well as usurp regulatory

factors that normally target mRNAs for decay. Poliovirus,

for example, contains an RNA element that interacts with

and inactivates the RNase L endonuclease [48�]. Pseu-

doknot structures present at the 50 border of the 30UTR of

insect-borne flaviviruses stall the XRN1 enzyme

[36��,37��]. Rous sarcoma virus contains an RNA element

that insulates unspliced viral mRNAs from the nonsense-

mediated decay pathway [49]. As outlined above, several

RNA viruses utilize cellular RNA binding proteins that

regulate decay to either stabilize their RNAs or for other

aspects of viral replication/gene expression. Interestingly,

rabies virus appears to utilize the cellular RNA decay

machinery through the PCBP2 regulatory protein to fine

tune its gene expression via differential stability of its

glycoprotein mRNA [50�]. Thus some negative-sense

RNA viruses that encode multiple independent mRNAs

may use the RNA decay machinery in a manner similar to

cells to fine tune overall gene expression. Finally, some

RNA viruses through cap snatching [51] or viral-encoded

nucleases [52��] may simply attempt to dysregulate the

entire process of mRNA decay in infected cells in order to

re-model host gene expression and make the cell less able

to respond to various aspects of the infection.
Current Opinion in Microbiology 2012, 15:500–505
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Conclusions
Work to date likely has only scratched the surface on how

RNA viruses interface with aspects of the cellular RNA

decay machinery. The question has simply not yet been

addressed for many virus families. Therefore, future work

in this area will likely yield interesting strategies of viral

RNA stabilization that may have a significant impact on

viral replication and provide new insights into factors

involved in cellular mRNA stability. The overall impact

of viral-mediated disruption of cellular RNA decay path-

ways on host cell gene expression is also an understudied

area for most viruses. This disruption may dysregulate the

expression of numerous cellular mRNAs — particularly

those transcripts with short, highly regulated half-lives.

Since many of these short-lived cellular transcripts in-

clude cell cycle genes and factors implicated in innate and

adaptive immunity [53], investigations into this area may

shed important new light on the underlying molecular

mechanisms of aspects of viral replication and pathogen-

esis. Finally, disarming viral defense mechanisms against

the cellular mRNA decay machinery may afford a novel

avenue for therapeutic intervention to ameliorate the

effects of viral infection. This is particularly attractive

since viral stability mechanisms described to date appear

to be well conserved throughout individual virus families

[32��], allowing the possibility of broad spectrum drugs

against specific virus groups.
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