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Highlights
Phosphorylation of eIF2a is a key reg-
ulatory target for translation control
that is important in regulating transla-
tion during normal and stress
conditions.

Emerging data highlight that eIF2a
phosphorylation is crucial in neuronal
function and impacts synaptic plasti-
city as well as being inappropriately
increased in numerous neurodegen-
erative diseases.

Mutations in components of the eIF2a
phosphorylation circuit give rise to
human diseases, often including neu-
rological and/or neurodegenerative
pathologies.

In model systems of neurological dis-
ease with perturbed eIF2a function,
therapeutic restoration of proper eIF2a
control can decrease the severity of
disease via targeting of eIF2a kinases
or phosphatases, or by mitigating
phospho-eIF2a activity.

The regulation of eIF2a phosphoryla-
tion is a promising therapeutic target
for the treatment of neurological
diseases.
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A key site of translation control is the phosphorylation of the eukaryotic trans-
lation initiation factor 2a (eIF2a), which reduces the rate of GDP to GTP
exchange by eIF2B, leading to altered translation. The extent of eIF2a phos-
phorylation within neurons can alter synaptic plasticity. Phosphorylation of
eIF2a is triggered by four stress-responsive kinases, and as such eIF2a is
often phosphorylated during neurological perturbations or disease. Moreover,
in some cases decreasing eIF2a phosphorylation mitigates neurodegenera-
tion, suggesting that this could be a therapeutic target. Mutations in the g

subunit of eIF2, the guanine exchange factor eIF2B, an eIF2a phosphatase, or
in two eIF2a kinases can cause disease in humans, demonstrating the impor-
tance of proper regulation of eIF2a phosphorylation for health.

EIF2a Is a Major Nexus of Translation Regulation in Neurological Health and
Disease
The regulation of translation is an important aspect of the control of eukaryotic gene
expression, and most commonly occurs during the initiation phase of translation. Initiation
of translation is a multistep process wherein the mRNA–protein complex (mRNP) recruits a
multifactor complex (MFC) containing the initiation factors eIF1, eIF3, and eIF5, as well as the
eIF2 complex bound to GTP and the initiator tRNA, facilitating delivery of the ternary complex
to the 40S ribosomal subunit [1] (Figure 1). The MFC is most commonly recruited to the mRNA
by the eIF4F complex which recognizes and binds to the 50 cap structure and positions the
MFC to scan from the 50 end to the AUG initiation codon. Once the AUG is recognized,
hydrolysis of GTP by eIF2 commits the 40S ribosome to translation initiation and leads to the
recruitment of the 60S subunit and entry into the elongation phase of translation initiation.
After release of eIF2–GDP from the ribosome, GDP is exchanged for GTP by the guanine
nucleotide exchange factor (GEF) eIF2B, preparing the eIF2 complex for another round of
initiation.

The exchange of GDP for GTP on the heterotrimeric eIF2 complex by the eIF2B complex has
emerged as a major node of translation control (Figure 2). In humans, four distinct kinases can
be activated by various intracellular cues to phosphorylate the eIF2a subunit of the eIF2
complex on serine 51 (in humans) [2,3]. Generally, PERK (protein kinase R-like endoplasmic
reticulum kinase) phosphorylates eIF2a in response to unfolded proteins in the endoplasmic
reticulum (ER) as part of the unfolded protein response (UPR) (see Glossary), while the eIF2a
kinases protein kinase R (PKR), heme-regulated inhibitor (HRI), and general control nonder-
epressible 2 (GCN2) respond to double-stranded (ds)RNA, oxidative stress, and nutrient
deprivation and UV, respectively. However, activation of these kinases is not always restricted
to specific stimuli. For example, in addition to UV and nutrient deprivation stress, the UPR can
activate GCN2 [4]. The diversity of inputs that trigger eIF2a kinase activation in general and in
neurons has not been fully elaborated.
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Glossary
Amyloid b (Ab) aggregates:
formed upon cleavage of the amyloid
precursor protein, amyloid b

peptides are highly prone to
aggregation. Extracellular Ab
aggregates are implicated in
Alzheimer’s disease pathogenesis.
Integrated stress response (ISR):
a conserved response to extrinsic
and intrinsic cellular stresses that
causes global suppression of
translational initiation through
reversible phosphorylation of eIF2a
and selective expression of stress-
induced genes at the levels of
transcription and translation.
MEHMO syndrome: a rare
syndrome defined by mental
retardation, epileptic seizures,
hypogenitalism, microcephaly, and
obesity caused by mutations in the
EIF2S3 gene, which encodes the
gamma subunit of the eIF2 complex.
RAN (Repeat-associated non-
AUG) translation: translation of
repeat expansion-containing RNAs in
multiple open reading frames through
non-canonical (non-AUG) translation
initiation, leading to generation of
mono-, di-, tetra-, and penta-
peptides.
Repeat expansion diseases: a
class of neurological disorders
including Huntington disease,
myotonic dystrophy, and fragile X
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Figure 1. The Translation Initiation Pathway in Eukaryotes Comprises Several Key Steps. First, the eukaryotic initiation factor (eIF) 2B complex reloads the
eIF2 complex with GTP to enable ternary complex formation. Next, the 43S preinitiation complex assembles and recruits mRNA to be translated. Scanning commences
to then enable start codon recognition, and translation initiates upon formation of the 80S complex.
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Figure 2. The Eukaryotic Initiation
Factor (eIF) 2 Complex Is a Crucial
Regulatory Nexus for Translation
Initiation. The a subunit of the eIF2 com-
plex is phosphorylated (P) by any of four
kinases [protein kinase R-like endoplas-
mic reticulum kinase (PERK), general con-
trol nonderepressible 2 (GCN2), heme-
regulated inhibitor (HRI) and protein
kinase R (PKR)] in response to stress,
and is dephosphorylated by stress-
induced (GADD34, growth arrest and
DNA damage inducible protein 34) or
constitutively expressed (CReP, constitu-
tive reverter of eIF2a phosphorylation)
phosphatases. Phospho-eIF2a inhibits
the eIF2B complex, reducing guanine
exchange factor activity and limiting
translation initiation.
Phosphorylation of eIF2a increases its affinity for the GEF eIF2B, and thereby limits the
exchange of GDP for GTP [5]. Of note, under conditions of increased tRNA and eIF2gb levels,
the a subunit of the eIF2 heterotrimer is unnecessary for ternary complex formation and
translation in yeast [6]. Phosphorylation of eIF2a reduces the concentration of eIF2–GTP
complexes, and thereby decreases bulk translation. However, mRNAs that contain upstream
open reading frames (uORFs) can actually exhibit increased translation from the major ORF
because the kinetics of eIF2–GTP and eIF3 reassociation with scanning ribosomes are slow
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mental retardation syndrome caused
by repeat expansion mutations that
lead to pathogenic loss or gain of
function.
Tau oligomers: the neuronal
microtubule-associated protein tau
can aggregate and form intracellular
tau oligomers and neurofibrillary
tangles, histological hallmarks
implicated in the pathogenesis of
numerous tauopathies including
Alzheimer’s disease and
frontotemporal dementia.
Unfolded protein response (UPR):
a coordinated cellular response to
endoplasmic reticulum (ER) stress
that activates ATF6 (activating
transcription factor 6), PERK (protein
kinase R-like endoplasmic reticulum
kinase), and IRE1 (inositol-requiring
enzyme 1) to reprogram
transcriptional and post-
transcriptional gene regulation,
ultimately to reduce cellular protein
production and enhance protein
folding capacity in the ER.
Vanishing White Matter Disease
(VWMD): a rare fatal leukodystrophy
caused by mutations in genes
encoding any subunit of the EIF2B
complex. Episodic, progressive
deterioration of the white matter can
occur following trauma or illness.
Wolcott–Rallison syndrome: a rare
syndrome due to mutations in PERK
(protein kinase R-like endoplasmic
reticulum kinase) that causes
microcephaly, intellectual disability,
developmental delays, non-
autoimmune diabetes, liver and renal
dysfunction, and rarely
neurodegeneration in childhood.
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Figure 3. Translation Initiation of Mammalian Activating Transcription Factor 4 (ATF4) mRNA Harboring
Inhibitory Upstream Open Reading Frames (uORFs) Is Enhanced During Stress when the Ternary Complex
is Limited. Adapted, with permission, from [22].
enough to bypass the upstream inhibitory uORFs [7] (Figure 3). Similarly, mRNAs that utilize
non-canonical translation initiation mechanisms such as internal ribosome entry sites (IRESs)
can show increased translation with eIF2a phosphorylation [8,9]. Further, different stresses can
cause similar and distinct changes in the functional transcriptome (corresponding to the
activation of specific eIF2a kinases), as has been shown in studies in mouse liver cells
[10,11], likely as a result of either eIF2a-independent stress-activated gene regulation mecha-
nisms or cell type-specific differences in the relative abundances of each kinase. Thus, eIF2a
phosphorylation is important in the downregulation of bulk translation under a wide variety of
conditions, but is equally (or even more) important in allowing the enhanced translation of
specific mRNAs.

The phosphorylation of eIF2a in response to a wide variety of stresses is a key part of the overall
response to stress, which is referred to as the integrated stress response (ISR) [2,12]. The
ISR involves initial activation of an eIF2a kinase (e.g., PERK), leading to eIF2a phosphorylation,
and a decrease in bulk translation activity with enhanced translation of some specific mRNAs.
The enhanced translation of specific mRNAs, such as those encoding transcription factors
ATF4 and CHOP, leads to transcriptional induction of downstream genes which modulate the
recovery from stress, or, if the stress is too extreme, can trigger apoptosis (reviewed in [13]).

Evidence now shows that the control of eIF2a phosphorylation plays important roles in
neurons, both in regulating synaptic plasticity and in response to neurodegenerative diseases.
This regulation is complex because all four eIF2a kinases are expressed in the brain, although
HRI expression is very low (reviewed in [14]). Of note, differential abundances of each kinase in
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different brain regions could confer specific functional outcomes upon stress in disease
contexts. Moreover, mutations that alter this regulatory circuit can have dramatic deleterious
consequences that cause disease. We review below the contributions of eIF2a phosphory-
lation to neuronal health in both normal and disease contexts.

eIF2a Phosphorylation Modulates Synaptic Plasticity
Numerous observations provide genetic data that eIF2a phosphorylation affects synaptic
plasticity (reviewed in depth in [14,15]). For example, mice heterozygous for the S51A mutation,
which prevents eIF2a phosphorylation by changing the phosphorylation site, have enhanced
long-term potentiation (LTP) and memory (LTM) [16]. Similarly, an increase in PKR activity in
hippocampal neurons impaired long-lasting (L)-LTP and LTM in mice [17], while hippocampal
infusion of sal003, a small compound that inhibits dephosphorylation of phospho (p)-eIF2a,
limited L-LTP and LTM [16]. Moreover, consistent with PKR activity limiting memory formation,
inhibition or depletion of PKR enhances learning and memory in mice [18].

The role of eIF2a phosphorylation in memory formation is complex, and alterations in eIF2a
phosphorylation can have different effects depending on the experimental context. For exam-
ple, mice lacking the GCN2 kinase show a lower threshold for L-LTP with weak training
regimens, but are deficient at memory consolidation with stronger training paradigms [19]. The
dual effects of alterations in eIF2a phosphorylation on learning and memory highlights that this
is a crucial regulatory site and needs to be able to be modulated in multiple ways for the
appropriate outcome.

The mechanism by which eIF2a phosphorylation affects L-LTP and LTM is likely to involve
altering the translation of specific neuronal mRNAs that contain uORFs, and therefore will have
enhanced translation when eIF2a is phosphorylated. For example, the activating transcription
factor 4 (ATF4) mRNA has two uORFs, and the ATF4 mRNA shows increased translation at the
second downstream uORF when eIF2a is phosphorylated [20–22] (Figure 3). ATF4 encodes a
transcription factor that can induce downstream genes, and also binds to and inhibits CREB, a
key transcriptional factor for activating mRNAs required for synaptic plasticity [23]. Consistent
with ATF4 being an important target in this control circuit, eIF2a phosphorylation generally
correlates with increased ATF4 expression and impaired L-LTP and LTM, leading to defects in
memory and learning [17,19,24]. Correspondingly, inhibition of eIF2a dephosphorylation with
Sal003 in hippocampal slices from ATF4�/� mice had no effect on L-LTP (e.g., [16]). Thus,
regulation of ATF4 translation by eIF2a phosphorylation is likely to play an important role in the
modulation of L-LTP and LTM.

Notably, recent work demonstrated that translation initiation on the second ATF4 uORF is
blocked under normal conditions by m6A methylation because depletion of the demethylase
ALKBH5 (alkB homolog 5, RNA demethylase) suppressed ATF4 production, while depletion of
the methyltransferase METTL3 (methyltransferase-like 3) caused increased ATF4 induction
during amino acid deprivation stress [25]. This implies that ATF4 regulation and, as such, the
effects of eIF2 phosphorylation on synaptic plasticity, may be affected by m6A modification of
mRNAs.

One anticipates that altered translation of multiple other neuronal mRNAs in response to eIF2a
phosphorylation will also affect synaptic modulation. Several other neuronal mRNAs have
uORFs similar to ATF4, and those mRNAs will likely have increased translation rates upon eIF2a
phosphorylation ([15] for review). For example, GADD34 mRNA has two uORFs and its
translation during eIF2a phosphorylation would initiate a negative feedback loop leading to
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dephosphorylation of eIF2a [26,27]. Similarly, the mRNA for protein kinase M(z), which is
required for memory formation, has seven uORFs and has been proposed to exhibit decreased
translation when PERK is activated [28]. Therefore, the post-transcriptional regulation of
mRNAs at the level of translation is one mechanism by which neuronal cell function is
modulated.

Pharmacological Modulation of eIF2a Phosphorylation
The effect of eIF2a phosphorylation on neuronal function identifies this circuit as a potential
target for pharmacological intervention. Three classes of drugs have been identified that affect
various aspects of this control process (Figure 4). Several inhibitors of the eIF2 kinases have
been identified (reviewed in [29]). For example, the PERK inhibitor I, GSK2606414 [30], has
been used in many experiments to manipulate eIF2a phosphorylation in animals [31,32].
Similarly, various PKR inhibitors have also been used in neuronal contexts (e.g., [33,34]).
Screens have been performed to identify inhibitors of HRI and GCN2 (reviewed in [29]), and the
GCN2 compounds appear to be effective in tissue culture models [35]. In addition, compounds
that inhibit GADD34/PP1c or CReP/PP1c phosphatase action on eIF2 have been identified. For
example, the Sal003 compound, which is an analog of salubrinal, is a cell-permeable com-
pound that inhibits PP1c-mediated dephosphorylation of eIF2a [36]. Finally, a novel com-
pound, ISRIB, has been identified that suppresses the negative effects of eIF2 phosphorylation
[37]. While these compounds are useful research tools, the continued identification and
refinement of these and other pharmacological tools to manipulate eIF2a phosphorylation
in neurons will be an important area for future drug discovery. Special emphasis should be
placed on evaluating the degree to which the ISR is perturbed by therapeutic modulation
because complete and/or chronic inhibition or activation of components of the ISR could itself
promote disease.

eIF2a Phosphorylation Occurs in Many Brain Perturbations and
Degenerative Diseases
A striking observation is that eIF2a phosphorylation, and/or activation of aspects of the ISR,
occur in a wide variety of brain perturbations and neurological diseases. For example, eIF2a
phosphorylation, stress-induced gene expression, and/or activated eIF2a kinases are seen in
patient tissues and models of traumatic brain injury [37–39], Alzheimer’s disease [40–42],
amyotrophic lateral sclerosis [31,43], repeat expansion diseases [44–48], Parkinson’s
disease [49], and a wide variety of leukodystrophies (reviewed in [50,51]; including Charcot-
–Marie–Tooth disease [52] and Pelizaeus–Merzbacher disease [53,54]). Thus, activation of the
ISR and phosphorylation of eIF2a is a common factor in many neurodegenerative diseases.

Different mechanisms contribute to activating kinases of eIF2a in these disease conditions
(Table 1). For example, in several hypomyelination diseases, point mutations affecting the
folding of very highly expressed proteins that traverse through the ER lead to the accumulation
of unfolded proteins in the ER and trigger an unfolded protein response and PERK activation
[52–56]. Similarly, amyloidb(Ab) aggregates and tau oligomers in Alzheimer’s disease
models can trigger the UPR through their association with the ER to activate PERK, GCN2, or
PKR [28,57–60], and prion-like TDP-43 aggregates can also induce eIF2a phosphorylation
[31,46]. Therefore, the aberrant accumulation of misfolded or aggregation-prone proteins can
contribute to ISR activation in many neurological disorders.

Neuroinflammation, which is widely observed in many neurodegenerative disorders, is also
thought to contribute to activation of the ISR and, conversely, can also result from chronic ISR
activation (reviewed in [61]) because cytokines and NF-kB are upregulated during the ISR
Trends in Molecular Medicine, June 2018, Vol. 24, No. 6 579
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Figure 4. Small-Molecule Modulators of Phospho (p)-Eukaryotic Initiation Factor (eIF) 2a Activity. These
include Inhibitors of the eIF2a kinases PERK (protein kinase R-like endoplasmic reticulum kinase) [30,130], HRI (heme-
regulated inhibitor) [131–133], GCN2 (general control nonderepressible 2) [35], PKR (protein kinase R) [134], p-eIF2a
phosphatase GADD34 (growth arrest and DNA damage-inducible protein 34) [36,135], and an inhibitor of p-eIF2a activity
that increases eIF2B function [37].
[3,62,63]. In models of Alzheimer’s disease, the proinflammatory cytokine TNF-a is required for
activation of PKR and subsequent phosphorylation of eIF2a triggered by Ab oligomers [41].
Similarly, demyelinating lesions in patients and murine models of multiple sclerosis exhibit
elevated markers of ER stress [64–66], and interferon (IFN)-g causes ER stress in oligoden-
drocytes [67–69]. This may occur via rapid upregulation of protein biosynthesis that burdens
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Table 1. Chronic Activation of Stress-Response Pathways Resulting in eIF2a Phosphorylation Is a
Common Occurrence in Neurological Diseasea

Disease Potential stressor Stress-activated
kinase

Refs

Prion diseases (e.g., infectious prion
disease, Creutzfeldt–Jakob disease)

RNA–protein aggregates,
protein aggregates

PKR [76–80]

Repeat-expansion diseases (e.g.,
amyotrophic lateral sclerosis/
frontotemporal dementia, Huntington’s
disease)

Protein aggregates, RNA–
protein aggregates, peptides
from RAN translation,
dsRNA-like structures

PERK, PKR [31,46,48,74,75]

Alzheimer’s disease (familial or
associated with Down’s syndrome)

Ab protein aggregates, tau
oligomers, TNF-a

PKR, PERK, GCN2 [28,41,57–60]

Multiple sclerosis and inflammatory
leukodystrophy models

IFN-g-mediated translation
induction?

PERK, PKR [67–73]

Heritable hypomyelination disorders (e.g.,
Charcot–Marie–Tooth disease,
Pelizaeus–Merzbacher disease)

Misfolded, highly abundant
oligodendrocyte/Schwann
cell proteins retained in the
ER

PERK [51,53–56,82]

Parkinson’s disease, Lewy body
dementia

Defective mitochondria,
protein aggregates

PERK [49,94,136]

aAbbreviations: PKR, protein kinase R; PERK, protein kinase R-like ER kinase; GCN2, general control nonderepressible 2;
TNF-a, tumor necrosis factor a.
the ER [70] because treatment with IFN-g substantially alters the functional transcriptome [71].
It has also been suggested that IFN-g mRNA can activate PKR, thereby causing phosphor-
ylation of eIF2a and suppressing its own expression [72,73]. Neuroinflammation may be a key
factor in contributing to hyperactivation of the ISR in neurodevelopmental and degenerative
disorders.

A third potential mechanism for the activation of eIF2a kinases is through pathogenic or
disease-associated RNAs generated in disease contexts. Brain tissue from patients with
Huntington’s disease, a repeat-expansion disease caused by trinucleotide repeats in the
HTT gene, or from mouse models of the disease, have higher levels of activated PKR [48].
Because PKR could be copurified with HTT mRNA containing repeats, but not with wild-type
HTT mRNA from patient-derived brain tissue lysates [48], and mutant HTT and other RNAs with
pathogenic repeat expansions may form dsRNA-like structures [74,75], it is possible that PKR
can bind to repeat expansion-containing RNAs as substrates to activate the ISR.

PKR may also be activated by some RNA–protein complexes. For example, the conversion of
cellular prion protein to the pathogenic form is enhanced by RNA [76,77], and prions can form
RNA–protein aggregates [78,79] that are capable of activating PKR [80]. Similarly, the presence
of large stress granules, which are sizable assemblies of non-translating mRNPs, can cause
PKR activation [81]. Therefore, aberrant RNAs and RNP complexes could also contribute to
ISR activation through PKR signaling in various neurodegenerative conditions.

Protective Effects of eIF2a Phosphorylation in Neurological Disease
Contexts
Although the phosphorylated form of eIF2a is observed in a variety of neurological disorders,
phosphorylation of eIF2a could in principle be beneficial to neurons or glial cells. Murine models
of hypomyelination and demyelination disorders have lent support to the idea that translational
suppression during stress reduces the burden of protein and/or lipid biosynthesis in the ER of
Trends in Molecular Medicine, June 2018, Vol. 24, No. 6 581



myelin-forming oligodendrocytes, resulting in diminished mRNA translation and alleviating
disease. For example, mouse models of Charcot–Marie–Tooth disease that exhibit chronic
UPR activation can be partially rescued by the inactivation or depletion of the p-eIF2a
phosphatase GADD34 [55,82,83], which causes an increase in the level of p-eIF2a and a
concomitant reduction in protein biosynthesis. Correspondingly, treatment with salubrinal
partially rescues demyelination due to IFN-g treatment in cultured hippocampal slices [84].
Similarly, activation of an ER stress response in a mouse model of multiple sclerosis before
disease onset was protective and limited disease severity [69]. Finally, depletion of the eIF2a
kinase PERK exacerbates IFN-g-induced oligodendrocyte and myelin loss [67].

Several studies have also demonstrated that p-eIF2a plays a positive role in the context of other
neurological disorders which do not primarily result in dysmyelination. For instance, salubrinal
treatment generally protects cells from apoptosis due to chronic ER stress [36], reduces
pathogenesis in a model of traumatic brain injury [85], and reduces excitotoxic cell death in
a murine model of epilepsy [86]. Therefore, elevation of p-eIF2a levels appears to be beneficial
in particular disease contexts.

Detrimental Effects of eIF2a Phosphorylation in Neurological Disease
Contexts
Because constitutive activation of the ISR can lead to cell death, strong and chronic eIF2a
phosphorylation could contribute to cell death and disease. For example, IFN-g inhibits
remyelination in association with ISR activation in cuprizone-treated and experimental auto-
immune encephalitis mouse models [68], and causes apoptosis of oligodendrocytes and
hypomyelination in rat oligodendrocytes in culture [67]. In support of this concept, small-
molecule inhibitors of the ISR including ISRIB, which increases the activity of eIF2B and
reduces the inhibitory effect of p-eIF2a to block translational suppression in biochemical
assays with purified proteins and in a variety of mammalian cell cultures [87,88], confer
beneficial effects in many different disease situations. Specifically, ISRIB enhances memory
consolidation and learning [37], protects against cognitive impairments due to traumatic brain
injury by improving long-term potentiation in the hippocampus [39], and rescues defects in
sociability and heightened anxiety in a mouse model of neuropsychiatric disorders including
schizophrenia and bipolar disorder [89]. ISRIB also reduces toxicity of amyloid-b in a neuronal
cell culture model of Alzheimer’s disease [90] and limits neuronal loss and spongiform
pathology in a murine model of infectious prion disease [91]. Therefore, directly targeting
GEF activity of the eIF2B complex can ameliorate some aspects of neurological disease,
although it is formally possible that ISRIB has additional off-target effects that could change
the functional transcriptome.

A recently reported chemical screen yielded two small molecules, dibenzoylmethane and
trazodone (an antidepressant), that repress the activity of a CHOP reporter in Chinese hamster
ovary cells [92] during tunicamycin (ER) stress to levels similar to those observed with ISRIB
treatment [93]. It was hypothesized that these drugs may increase ternary complex levels
through a mechanism similar to that of ISRIB because global translation activity was increased
upon treatment of hippocampal slices from diseased mice (described below) with trazodone or
dibenzoylmethane, and levels of p-eIF2a remain unchanged in the presence of either drug.
Importantly, treatment with trazodone or dibenzoylmethane significantly extended lifespan and
reduced neuronal loss in a mouse model of infectious prion disease, and partially rescued
pathology in a mouse model of frontotemporal dementia [93]. Therefore, increasing translation
activity without altering p-eIF2a levels (perhaps by modulating ternary complex levels) may
serve as an important therapeutic option for alleviating neuropathogenesis.
582 Trends in Molecular Medicine, June 2018, Vol. 24, No. 6



Depletion of eIF2a kinases can also confer neuroprotective activity in some contexts. Genetic
depletion of either PERK or GCN2 enhances spatial memory and rescues LTP defects caused
by Ab in a murine Alzheimer’s disease model [28]. PERK inhibitor I (GSK2606414) reduces
neuronal loss in Drosophila models of early-onset Parkinson’s disease [94], and suppresses
TDP-43 toxicity in Drosophila and murine neuronal culture models of amyotrophic lateral
sclerosis [31]. In addition, the PERK inhibitor I is neuroprotective in a murine model of
frontotemporal dementia [95], and prevents clinical disease and neurodegeneration in mice
infected with prions [96]. Targeting PKR also improves neurologic outcomes in several disease
contexts. The PKR inhibitor C16 prevents neuronal apoptosis induced by excitotoxicity in rats
[34], and genetic ablation of PKR inhibits neuroinflammation associated with Ab accumulation
[97]. Further, neurodegeneration produced by thiamine deficiency can be rescued in mice
through treatment with PKR inhibitors [33]. The observation that pharmacological suppression
of p-eIF2a-mediated translational repression is beneficial in many disease contexts therefore
indicates that activation of the ISR can contribute to neuropathology.

An additional intriguing pathogenic outcome of eIF2a phosphorylation is the selective increase
in repeat-associated non-AUG (RAN) translation [46,47]. RAN translation is a non-
canonical type of translation that is observed in repeat-expansion diseases including amyo-
trophic lateral sclerosis, spinocerebellar ataxia type 8, fragile X tremor ataxia syndrome, and
Huntington’s disease (reviewed in [98,99]). RAN translation occurs on multiple different repeat
expansion-containing RNAs in any frame, producing mono-, di-, tetra-, and pentapeptide
repeat-expansion proteins [100–103]. These polypeptides accumulate in neurons and other
tissues, and can be neurotoxic [99,103]. Because repeat expansions can cause stress-
inducing protein and/or RNA aggregates (Table 1), and RAN translation is upregulated when
translation is downregulated during stress, targeting the ISR may prove to be doubly important
as a therapeutic mechanism for these disorders. Indeed, treatment of cell cultures with ISRIB
reduced RAN translation during stress [46], while treatment with Sal003, an analog of salubrinal
that inhibits GADD34 and increases p-eIF2a levels, causes increased RAN translation [47].
Therefore, modulation of the ISR generally serves as a key pharmaceutical approach in many
neurodegenerative and neurodevelopmental diseases.

In sum, these observations support the idea that there is an optimal range of translation activity
that needs to be maintained in stressed or unstressed conditions for proper control of the ISR
and optimal cell health/viability. For instance, in myelination disorders it is thought that the stage
of oligodendrocyte maturation (which dictates the level of protein and lipid production in these
cells) and the degree of ER stress caused by IFN-g play a role in determining whether an ISR is
beneficial or detrimental in the context of hypomyelination disorders [67–70]. However, the
beneficial effects of reducing eIF2a phosphorylation in multiple contexts indicate that this is an
exciting area for the development of new therapeutics.

Mutations in Components of the eIF2a GDP–GTP Cycle Cause Human
Diseases
Consistent with proper regulation of eIF2a phosphorylation being important for health, muta-
tions in several components of this circuit give rise to human diseases (Table 2). For example,
over 120 different recessive mutations in any of the five subunits of the GEF eIF2B give rise to
vanishing white matter disease (VWMD) [104,105]. VWMD is one of the most common
forms of childhood leukodystrophy, although symptoms can manifest at any age. Patients with
VWMD often exhibit developmental delays, spasticity, and ataxia, with progressive white matter
loss and ovarian dysgenesis. The severity of VWMD is inversely correlated with age of symptom
onset, and progressive white matter loss is often observed following physiological stresses
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Table 2. Several Neurological and Neurodevelopmental Disorders Are Caused by Mutations in Key Regulators of the Integrated Stress Responsea

Syndrome/neurological
disease

Heritability Zygosity Affected gene Mutations Refs

Global developmental delay,
microcephaly, intellectual
disability, hypomyelination

Autosomal recessive Homozygous PPP1R15B (also known
as CREP)

R658C [127,128]

MEHMO syndrome: severe X-
linked intellectual disability with
hypomyelination, spasticity,
and epilepsy

X-linked recessive Hemizygous EIF2S3 (also known as
EIF2G)

I222T, I259M, S108R,
V151L, I465SfsTer4

[115–117,136]

Vanishing white matter
disease: encephalopathy,
hypomyelination, spasticity,
ataxia, seizures, progressive
white matter loss (especially
after trauma or illness) at any
age

Autosomal recessive Homozygous or
compound heterozygous

EIF2B1, EIF2B2, EIF2B3,
EIF2B4, EIF2B5

EIF2B5 R113H (most
common)
>120 identified (see
[105])

[104–106,137–139]

Wolcott–Rallison syndrome:
microcephaly, developmental
delay, intellectual disability,
neurodegeneration in
childhood

Autosomal recessive Homozygous or
compound heterozygous

EIF2AK3 (also known as
PERK)

R587Q, E331X, R902X,
IVS14 + 1G-A,
K345fsTer1, Q523fsTer4

[122,124,140–142]

aAbbreviations: PPP1R15B, protein phosphatase 1 regulatory subunit 15B; EIF2S2, eukaryotic initiation factor 2 subunit 3; MEHMO, mental retardation, epileptic
seizures, hypogenitalism, microcephaly, obesity; EIF2B, eukaryotic initiation factor 2B; EIF2AK3, eukaryotic translation initiation factor 2a kinase 3.
including physical trauma, fear, and illness [105,106]. Disease-causing mutations can affect the
abundance, guanine exchange activity, and/or assembly of the eIF2B complex, any of which
theoretically could reduce cellular translation activity by reducing the pool of eIF2–GTP that is
available for ternary complex formation [105,107–109]. However, biochemical analyses have
revealed no single mechanistic explanation for all cases of VWMD [105,110]. Instead, it is likely
that a spectrum of outcomes occurs depending on the mutated subunit and the degree to
which the eIF2B complex is compromised.

Because eIF2B is a key regulatory node in the ISR, and is also responsible for the regeneration
of the GTP–eIF2 complex to enable translation initiation, mutations that cause VWMD are likely
to interfere with ISR resolution and/or normal translation activity in the cell. The ISR can be
activated in cells of the brain upon trauma [38,111] and in neuroinflammatory contexts [67–69],
and progressive episodes of white matter loss following these insults are noted in patients with
VWMD. This observation supports the idea that perturbed ISR induction or resolution could
result from disease-causing mutations in EIF2B genes. Consistent with eIF2B mutations
affecting the ISR, VWMD patient cells typically have normal levels of translation in the absence
of stress, but at least in some contexts hyper-repress translation during stress, fail to fully
induce the GADD34 protein, and therefore are defective in stress recovery [112]. The VWMD
phenotype is likely to also be affected by alterations in the proteome of eIF2B mutant cells, as
well as by defects in inducing key molecules that promote remyelination following injury [113–
115].

In a disease related to VWMD, mutations in the gene encoding the third subunit of the eIF2
complex (EIF2G/EIF2S3), cause a severe X-linked intellectual disability called MEHMO (mental
retardation, epileptic seizures, hypogonadism and hypogenitalism, microcephaly, and obesity)
syndrome [116–118]. MEHMO syndrome is characterized by severe intellectual disability,
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cognitive and motor delays, microcephaly, hypomyelination, obesity, and hypogenitalism, and
many patients also suffer from non-autoimmune diabetes mellitus and epilepsy [118]. As in
VWMD, a spectrum of phenotypes are caused by different EIF2S3 mutations in MEHMO
syndrome. Notably, illness-aggravated pathologies associated with MEHMO syndrome have
been reported, as seen in many VWMD cases [118]. Specific mutations in EIF2S3 dramatically
reduce cell growth/viability, the fidelity of translation initiation (as measured using reporters that
assess AUG start site selection versus UUG start-site selection), and cause increased stress-
induced gene expression in yeast models, whereas other mutations do not [116,118]. Analysis
of a single-patient fibroblast sample from a patient with MEHMO syndrome revealed elevated
CHOP expression at the protein and mRNA levels, indicating that some mutations in EIF2S3
may reduce eIF2 activity and cause a chronic stress state [118]. Because some disease-
causing mutations in EIF2S3 perturb the interaction of eIF2g with eIF2Bb, it is possible that
constitutively reduced translation activity contributes to a chronic stress response in patient
cells. Further studies should be undertaken to determine how the full range of EIF2S3 mutations
that cause MEHMO syndrome affect the ISR, and assess drugs targeting the ISR as therapeutic
intervention strategies.

Mutations in eIF2a Kinases Lead to Human Diseases
Mutations in two of the eIF2a kinases also give rise to specific human pathologies that are not
restricted to the nervous system. Recessive mutations in GCN2 lead to familial pulmonary capillary
hemangiomatosis [119], or in other patients to a related pulmonary veno-occlusive disease (PVOD)
[120,121]. Although these are not neuronal dysfunctions, one anticipates that these patients may
have altered neuronal properties given the changes in GCN2 function. Similarly, mutations in PERK
lead to Wolcott–Rallison syndrome, a rare autosomal recessive form of diabetes [122,123].
Wolcott–Rallisonsyndromepatientsoften display some intellectual deficiencies, illustrating the role
of PERK in proper neuronal development and function [123,124]. A rare allele of PERK (EIF2AK3)
has also been identified that increases the risk of the tauopathy progressive supranuclear palsy
(PSP), although how this specific alteration of PERK leads to PSP is unclear [125]. A patient with
Wolcott–Rallison syndrome who had neurodegeneration (neurofibrillary tangles reminiscent of
tauopathies, FUS-positivity in neurons as observed in frontotemporal dementia, activation of
astrocytes and Bergmann glial cells, and elevated microglia) in childhood was homozygous for
a premature stop codon mutation in PERK that could encode an inactive truncated form of PERK
[124]. The observation that loss of these eIF2a kinases leads to genetic disease again illustrates the
importance of proper eIF2 control for health and function.

Mutations in Phosphatases Targeting eIF2a
A final set of disease mutations affecting the phosphorylation of eIF2a are recessive mutations
in the phosphatase gene PPP1R15B, also known as CReP (constitutive reverter of eIF2a
phosphorylation). Like the stress-induced GADD34 protein, CReP is a regulatory subunit of
PP1C that functions to dephosphorylate eIF2 when phosphorylated at Ser51. However, CReP
is constitutively expressed [126]. These patients develop a multisystem syndrome with diabe-
tes, microcephaly, intellectual disability, hypomyelination, and short stature [127,128], in line
with the observation that Ppp1r15b deficiency severely impairs the development and growth of
mice [129]. Importantly, disease-causing mutations reduce the phosphatase activity of CReP in
vitro in rat insulin-secreting pancreatic b cell lines [127], and patient-derived cell lines show
increased levels of p-eIF2a [128]. Expression of disease-causing CReP mutants promoted
apoptosis in rat primary and insulinoma pancreatic b cell lines [127], and this could contribute to
diabetes observed in this syndrome, potentially resulting from chronic and prolonged eIF2a
phosphorylation. Therefore, defects in the regulators of the ISR can also contribute to human
neurodevelopmental disease.
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Outstanding Questions
What are the differences in individual
cell types that lead to unique
responses to perturbation of eIF2a
phosphorylation? The eIF2a kinases
and phosphatases are widely
expressed, but perturbation of the
pathway often leads to defects in spe-
cific cell types for an unknown reason.

What additional regulatory circuits
impinge upon components of eIF2a
regulation, and how might they be
manipulated for therapeutic benefit?
The functional levels of the eIF2B com-
plex affect the response to eIF2a
phosphorylation, but how eIF2B is
functionally controlled has not been
fully elucidated.

Can effective therapies be developed
that use small molecules to restore
proper regulation of eIF2a phosphor-
ylation in disease settings? This is a
challenge because eIF2a phosphory-
lation is crucial for normal neuronal
function, and a balance will be needed
between preventing aberrant control
through this regulatory site and main-
taining its normal functions.

Box 1. Clinician’s Corner

The control of translation and its regulation in response to stress is a crucial aspect of neuronal function. A key node in
translational control is eIF2a phosphorylation, which downregulates bulk translation and allows selective translation of
key mRNAs.

Phosphorylation of eIF2a is crucial in neuronal function and impacts synaptic plasticity as well as being inappropriately
increased in numerous neurodegenerative diseases.

Mutations in several proteins involved in controlling the eIF2a phosphorylation circuit give rise to human diseases
including neurological pathologies.

Compounds targeting the eIF2a kinases or phosphatases, or abrogating the effect of eIF2a phosphorylation, are in
development. In model systems of neurological disease with perturbed eIF2a function, therapeutic restoration of proper
eIF2a control can decrease the severity of disease.

In the future, pharmacological manipulation of the control and extent of eIF2a phosphorylation may be a possible
therapy for the treatment of some neurological diseases.
Concluding Remarks and Future Perspectives
Key questions remain in the field of eIF2a-dependent stress-responsive translation regulation
and neuronal disorders (see Outstanding Questions). First, how different cell types and tissue
contexts affect the sensitivity to acute and chronic stressors that activate eIF2a phosphory-
lation and the ISR, and the diversity in stress-induced gene expression, remain to be fully
explored. Such an analysis could yield insight into why defects in the ISR seem to consistently
cause neuronal (and often pancreatic) defects. Much research has revealed the main players in
the ISR, including the eIF2a kinases and phosphatases, and has illuminated many of the stress-
induced genes that are expressed following eIF2a phosphorylation. However, whether stress-
induced genes are primarily regulated transcriptionally or post-transcriptionally during and after
the ISR, and how cell type and disease context alters the identity of these genes, remains to be
characterized. Third, future work should focus on the interplay between stress-induced RNA–
protein granules and translation regulation during the ISR. Such research could shed light on
the mechanisms by which repeat-expansion disorders and TDP-43 (another prion-like RNA-
binding protein) mutations confer pathogenesis. Finally, exciting developments have resulted in
the elucidation of several compounds (e.g., ISRIB, salubrinal, and PERK inhibitors) that allow us
to chemically modulate essential components of the ISR. The utility of these compounds in
alleviating a wide variety of neurodevelopmental and neurodegenerative diseases is only now
beginning to be appreciated (Box 1). As future research identifies different disease contexts for
which these compounds may be effective, tests these compounds in cell culture and animal
models, and determines mechanisms for cell- and/or tissue-specific delivery of these com-
pounds, much will be learned about the potential for therapeutic modulation of the ISR in many
disease contexts.
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