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Abstract

The integrated stress response (ISR) is a conserved mechanism by which

eukaryotic cells remodel gene expression to adapt to intrinsic and extrinsic

stressors rapidly and reversibly. The ISR is initiated when stress-activated pro-

tein kinases phosphorylate the major translation initiation factor eukaryotic

translation initiation factor 2ɑ (eIF2ɑ), which globally suppresses translation

initiation activity and permits the selective translation of stress-induced genes

including important transcription factors such as activating transcription

factor 4 (ATF4). Translationally repressed messenger RNAs (mRNAs) and

noncoding RNAs assemble into cytoplasmic RNA–protein granules and

polyadenylated RNAs are concomitantly stabilized. Thus, regulated changes in

mRNA translation, stability, and localization to RNA–protein granules contrib-

ute to the reprogramming of gene expression that defines the ISR. We discuss

fundamental mechanisms of RNA regulation during the ISR and provide an

overview of a growing class of genetic disorders associated with mutant alleles

of key translation factors in the ISR pathway.
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1 | INTRODUCTION

The integrated stress response (ISR) is activated when eukaryotic cells experience dramatic changes in intrinsic or
extrinsic conditions. Such changes include temperature, osmolarity, ultraviolet (UV) radiation, oxidation, and endoplas-
mic reticulum (ER) stressors, the accumulation of aggregated proteins or in response to certain proinflammatory cyto-
kines, and pathogen-associated molecular patterns. These diverse stressors activate any of four protein kinases that
phosphorylate eukaryotic translation initiation factor 2α (eIF2ɑ), suppressing its activity to globally repress translation
initiation while enhancing the translation of stress-induced genes, including key transcription factors that launch a
gene expression program to allow the cell to adapt to stress or drive it to undergo apoptosis (Costa-Mattioli &

Received: 15 May 2021 Revised: 3 August 2021 Accepted: 4 August 2021

DOI: 10.1002/wrna.1689

WIREs RNA. 2021;e1689. wires.wiley.com/rna © 2021 Wiley Periodicals LLC. 1 of 41

https://doi.org/10.1002/wrna.1689

https://orcid.org/0000-0001-6031-8748
https://orcid.org/0000-0001-5562-9920
https://orcid.org/0000-0002-4989-0150
mailto:smslmoon@umich.edu
http://wires.wiley.com/rna
https://doi.org/10.1002/wrna.1689


Walter, 2020; Hershey et al., 2019; Pakos-Zebrucka et al., 2016). One key stress-induced gene is PPP1R15A which
encodes GADD34 (growth arrest and DNA damage-inducible gene 34). GADD34 promotes the dephosphorylation of
phosphorylated eIF2α (p-eIF2ɑ) and reverses the ISR in a negative feedback loop (Novoa et al., 2001). Constitutively
expressed RNAs are globally stabilized, and translationally repressed RNAs accumulate in cytoplasmic RNA–protein
(RNP) granules termed stress granules and processing bodies (P-bodies; P. Ivanov et al., 2019; Protter & Parker, 2016).
The release of p-eIF2ɑ-mediated translation repression coincides with the disassembly of stress-induced RNP granules
and resolves the ISR. Thus, regulation of messenger RNA (mRNA) at the levels of translation and stability enables a
rapid, global response to stress that results in the formation and accumulation of RNP granules and drives cell fate.

Recent studies point to a key role in the initial stages of the ISR in human development and health, as a growing list
of genetic diseases are associated with mutant alleles of eIF2ɑ kinases, a p-eIF2ɑ phosphatase, a member of the eIF2
heterotrimer, and the heteropentameric eIF2 guanine nucleotide exchange factor (GEF) eIF2B. While the molecular
mechanisms underlying the divergent pathogenesis and phenotypes of these disorders mostly remain undefined, key
insights suggest defects in the kinetics and intensity of the ISR contribute to these disease states. We present a compre-
hensive overview of the mechanisms of translation regulation, RNA stability, and RNA localization to RNP granules
during the ISR, as well as the current understanding of genetic diseases associated with mutant alleles of the ISR
machinery including Vanishing White Matter (VWM) disease, Wolcott–Rallison syndrome, and MEHMO syndrome.

2 | TRANSLATION AND THE INTEGRATED STRESS RESPONSE

2.1 | Translation overview

Translation is an energy-intensive process (Buttgereit & Brand, 1995; G.-W. Li et al., 2014) and is consequently highly
regulated during cellular stress conditions. Translation takes place in three main stages: (1) initiation, (2) elongation,
and (3) termination and ribosome recycling. Translation initiation begins with formation of the ternary complex which
is composed of eIF2 bound to GTP and methionyl-initiator tRNA (Met-tRNAi). EIF2 is a heterotrimer of the subunits α,
β, and γ. Once formed, the ternary complex binds the 40S small ribosomal subunit along with the initiation factors
eIF1, eIF1A, eIF3, and eIF5 to form the 43S preinitiation complex (Hershey et al., 2019; Merrick & Pavitt, 2018). For
mRNA to be used as a template for protein synthesis, it must assemble into the eIF4F complex, a protein complex com-
posed of the initiation factors eIF4E, eIF4G, and eIF4A, at the 50-7-methylguanosine cap and the poly(A)-binding pro-
tein (PABP) at the 30-poly(A) tail (Jackson et al., 2010; Merrick & Pavitt, 2018). The eIF4F complex facilitates
recruitment of the 43S preinitiation complex to the 50-untranslated region (UTR) of the mRNA near the
7-methylguanosine cap. Next, the 43S preinitiation complex scans toward the 30-end of the mRNA in search of an AUG
codon and, once identified, the AUG codon base pairs with the Met-tRNAi anticodon in the peptidyl (P) site of the
small ribosomal subunit. Subsequently, the eIF2-bound GTP is hydrolyzed to GDP promoting the release of the Met-
tRNAi. This frees eIF2-GDP to be acted on by the GEF eIF2B to generate eIF2-GTP to be available for another transla-
tion initiation cycle. Translation initiation ends with the arrival of the 60S large ribosomal subunit to produce the 80S
ribosome (reviewed in Hershey et al., 2019; Merrick & Pavitt, 2018).

Initiation is the rate-limiting stage of translation and therefore is imperative to regulate. Phosphorylation regulates
a major element of translation initiation, 7-methylguanosine cap-recognition by the eIF4F complex (eIF4E, eIF4G, and
eIF4A; Hershey et al., 2019; Sonenberg & Hinnebusch, 2009). A class of proteins termed eIF4E-binding proteins (4E-
BPs) binds eIF4E which prevents eIF4G binding, eIF4F assembly, 7-methylguanosine cap-recognition, and inhibits ini-
tiation. 4E-BPs are regulated by phosphorylation—dephosphorylated 4E-BPs bind strongly to eIF4E, and phosphory-
lated 4E-BPs bind weakly to eIF4E. In unstressed or nutrient-replete conditions, the well-known kinase mammalian
target of rapamycin (mTOR) phosphorylates 4E-BPs. This promotes eIF4F assembly by allowing eIF4E and eIF4G to
interact which drives translation initiation. In stressed or nutrient-limited conditions when active translation could be
detrimental to cell health, 4E-BPs are not phosphorylated and inhibit eIF4E, thereby preventing 7-methylguanosine
cap-recognition and inhibiting initiation (Sonenberg & Hinnebusch, 2009).

Translation continues with the production of a nascent peptide chain via elongation. At the onset of translation elon-
gation, Met-tRNAi is positioned in the ribosomal P site, allowing the next tRNA to enter the aminoacyl (A) site of the ribo-
some. Like translation initiation, several factors are required for translation elongation. A ternary complex containing the
elongation factor eukaryotic translation elongation factor 1A (eEF1A), GTP, and the tRNA complementary to the codon
following AUG binds the ribosomal A site. Upon base pairing of the mRNA codon and the aminoacyl-tRNA anticodon,
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GTP is hydrolyzed, and eEF1A-GDP is released from the ribosome. The GEF eEF1B swaps GDP for GTP, allowing
eEF1A-GTP to bind another tRNA destined for the ribosomal A site. Next, eIF5A localizes to the ribosomal exit (E) site
and promotes the formation of a peptide bond between the carboxyl group of the peptidyl-tRNA and the amino group of
the aminoacyl-tRNA. The newly generated peptide is passed from the peptidyl-tRNA to the aminoacyl-tRNA. eEF2 bound
to GTP promotes translocation of the peptidyl-tRNA and aminoacyl-tRNA to the E and P sites, respectively, and the ribo-
some progresses down the mRNA by one codon. Finally, the deacylated tRNA is released from the E site, and another
cycle of elongation is poised to begin (reviewed in Dever et al., 2018; Hershey et al., 2019).

The final events of translation are termination and ribosome recycling. Translation is terminated when the
ribosome encounters a stop codon (UAA, UGA, or UAG) in its A site as no tRNA anticodons match stop codons.
Termination requires the action of a ternary complex made up of the eukaryotic translation release factors eRF1
and eRF3, and GTP (Dever & Green, 2012; Hellen, 2018; Jackson et al., 2012). First, eRF1 identifies the stop codon
in the A site. Next, eRF3, a GTPase, hydrolyzes GTP and triggers the hydrolysis of the peptidyl-tRNA by eRF1. As a
result, the nascent polypeptide is released. While the protein product has been freed, the 80S ribosome, deacylated
tRNA, and the mRNA, altogether termed the post-termination complex, remains. The ATP-binding cassette protein
ABCE1 aids in post-termination complex recycling by splitting the 80S ribosome to release the 60S ribosomal sub-
unit. Next, the deacylated tRNA and mRNA are released from the 40S ribosomal subunit by the initiation factors
eIF1, eIF1A, and eIF3, or by eIF2D, or MCTS1 (multiple copies in T-cell lymphoma-1) and DENR (density regu-
lated protein). Finally, the released materials can be used for further rounds of translation (reviewed in
Hellen, 2018; Hershey et al., 2019).

2.2 | The integrated stress response

In addition to phosphorylation of 4E-BPs, another key way that translation initiation is regulated is by the phosphoryla-
tion of the α subunit of eIF2 at serine 51 during the ISR (Hershey et al., 2019; Sonenberg & Hinnebusch, 2009). The ISR
is a pathway that modifies transcription and translation to promote cell survival in response to stress. Alternatively, if
the stress is insurmountable, the ISR promotes cell death. Upon activation of the ISR, translation is globally suppressed,
and stress-induced genes are expressed. In tandem, RNP granules including stress granules are induced and regulated
changes in mRNA stability occur. The ISR is activated upon eIF2ɑ phosphorylation by stress-induced kinases.
Phosphorylation of eIF2α by any of the kinases inhibits global translation by converting eIF2 into an inhibitor of eIF2B.
Subsequently, eIF2B cannot exert its GEF activity on the eIF2 complex, eIF2 is unable to bind GTP, the ternary complex
fails to assemble, and translation initiation is prevented (Figure 1). Phosphorylation of eIF2ɑ is thus an efficient mecha-
nism for inhibiting global translation to prevent further compounding the cause of cellular stress, for example, by
preventing further amino acid consumption during nutrient deprivation, generating more misfolded proteins during
ER stress, or producing viral proteins when foreign double-stranded RNA (dsRNA) is detected.

To promote the expression of genes needed to recover from stress, or conversely to activate apoptosis if recovery is
not possible, translation of selective stress-resistant mRNAs is refractory to, or enhanced by, eIF2ɑ phosphorylation.
Multiple strategies are used by these mRNAs to promote their translation during the ISR including the use of regulatory
upstream open reading frames (uORFs; reviewed in Young & Wek, 2016), non-AUG start codons (reviewed in Kearse &
Wilusz, 2017), recruitment of initiator tRNAs through noncanonical initiation factors (Starck et al., 2016), and internal
ribosome entry sites (IRESs). One of the best characterized stress-induced genes is the transcription factor ATF4
(activating transcription factor 4, GCN4 in yeast; Harding et al., 2003). ATF4 is a master regulator that promotes the
expression of additional genes required for the stress response and its mRNA contains two uORFs. Under basal condi-
tions when ternary complex levels are plentiful, the ribosome translates the first uORF and is able to recruit the ternary
complex in time to reinitiate at the second uORF (Figure 2a). Because the second uORF overlaps with the primary open
reading frame (ORF), ATF4 translation is suppressed (Vattem & Wek, 2004). When the ISR is active and ternary com-
plex levels are limited, the ribosome requires more time to acquire a ternary complex after translating the first uORF,
allowing it to bypass the inhibitory second uORF and translate the primary ORF (Silva et al., 2019; Figure 2b). Because
different ATF4 ORFs are translated depending on ISR activity, ATF4 uORF translation can be used to determine when
the ISR is active (T. E. Dever, 1997; Helseth et al., 2021). A recent example of this is the development of an ATF4
reporter that produces a different color fluorophore depending on whether the primary ORF or the second uORF is
translated. This reporter was used to uncover that the ISR is constitutively activated in a small population of neurons in
mice, specifically striatal cholinergic interneurons, and that this is important for skill learning (Helseth et al., 2021).
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Interestingly, a recent report found that depletion of the noncanonical initiation factors eIF2D and DENR prevented
enhanced ATF4 expression in Drosophila melanogaster and human cells during stress (Vasudevan et al., 2020),
suggesting that a combination of strategies can be used to promote ISR-resistant translation. Examples of other uORF-
containing genes that are expressed at the transcriptional and translational levels upon ISR activation include DDIT3
(CHOP) and PPP1R15A (GADD34; Y.-Y. Lee et al., 2009; Marciniak et al., 2004; Palam et al., 2011).

A key feature of the ISR is that it is reversible, which is achieved by the dephosphorylation of p-eIF2α. The stress-
induced protein GADD34 and CReP (constitutive repressor of eIF2α phosphorylation), which is constitutively
expressed, are regulatory subunits that direct protein phosphatase 1 (PP1) to dephosphorylate p-eIF2α. Upon chronic
stress or stress resolution, p-eIF2α is dephosphorylated, allowing increased global translation initiation to take place
once again. Genetic depletion of the CReP gene Ppp1r15b is invariably lethal following birth in mice, which exhibit
increased p-eIF2α levels in the liver and defects in erythropoiesis that is partially rescued by expression of the
phosphorylation-insensitive Eif2aS51A allele (Harding et al., 2009). In contrast, genetic depletion of the GADD34 gene
Ppp1r15a does not markedly affect organismic development in a mouse model (Marciniak et al., 2004). Importantly,
p-eIF2α dephosphorylation is vital for mammalian development as mice lacking both Ppp1r15a and Ppp1r15b fail to
develop and are embryonic lethal (Harding et al., 2009). Thus, regulation of eIF2α function in the ISR is important for
the cellular response to diverse stresses and mammalian development.

FIGURE 1 Schematic depicting the roles of the key factors that drive the ISR in translation initiation, stress-induced gene expression,

and stress granule (SG) formation. In unstressed cells, low levels of p-eIF2ɑ enable high eIF2B function to generate abundant ternary

complex (TC) comprised of eIF2, GTP, and Met-tRNAi. High TC facilitates high global translation activity, suppressing stress-induced gene

expression, and SG formation. Upon stress, stress-activated protein kinases (HRI, PKR, PERK, and GCN2) increase p-eIF2ɑ levels and

suppress the guanine exchange activity of eIF2B. Resulting limited TC causes reduced global translation activity, SG formation, and stress-

induced gene induction (e.g., ATF4 and PPP1R15A (GADD34)). The GADD34 protein interacts with PP1 to dephosphorylate p-eIF2ɑ and

reverse the ISR
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Suppression of ribosome biogenesis is an additional mechanism by which the translation machinery may be regu-
lated during the ISR. Ribosome biogenesis occurs in the nucleolus, a biomolecular condensate in the nucleus where
ribosomal RNAs (rRNAs) are transcribed, processed, and assembled with ribosomal proteins into pre-ribosomal parti-
cles (K. Yang, Yang, & Yi, 2018). Chemical or genetic inhibitors of rRNA transcription, processing, ribosomal assembly,
or export from the nucleus, in addition to numerous insults that also activate the ISR (e.g., heat, nutrient deprivation,
UV light, and hypoxia) trigger nucleolar stress (K. Yang, Yang, & Yi, 2018). Ribosome biosynthesis is rapidly suppressed
upon amino acid deprivation stress when mTOR is inhibited and GCN2, an eIF2α kinase that induces the ISR in
response to amino acid starvation, is activated. Inhibition of mTOR by rapamycin suppresses ribosomal protein mRNA
and rRNA transcription (Mahajan, 1994; T. Powers & Walter, 1999; Zaragoza et al., 1998). MTOR-regulated changes in
the phosphorylation state of the RNA polymerase I transcription factor TIF-IA downregulates rRNA synthesis in this
context (Mayer et al., 2004). Ribosomal protein mRNAs are also translationally suppressed upon amino acid deprivation
and mTOR inhibition (Thoreen et al., 2012). Many ribosomal protein mRNAs, in addition to transcripts encoding trans-
lation elongation factors (e.g., eEF1A and eEF2) and PABP, harbor 50-terminal oligopyrimidine (TOP) motifs that cause
translation suppression upon mTOR inhibition or amino acid starvation (Meyuhas, 2000; Thoreen et al., 2012). Intrigu-
ingly, the RNA binding proteins TIA-1 (T-cell-restricted intracellular antigen-1) and TIAR (TIA-1-related) associate
with mRNAs harboring 50-TOP motifs during amino acid starvation and suppress their translation in a process that
requires both GCN2 and mTOR pathways (Damgaard & Lykke-Andersen, 2011). These findings suggest that translation
suppression upon amino acid deprivation stress first occurs via GCN2 and mTOR pathways and consequently

—

—

(a)

(b)

FIGURE 2 Schematic depicting ATF4 translation during the integrated stress response. Two upstream open reading frames (uORFs) in

the 50 leader of ATF4 regulate its translation. (a) Ternary complex levels are abundant in unstressed conditions enabling the ribosome to

recruit another ternary complex in time to reinitiate at the start codon of uORF 2 after translating uORF 1. Because uORF 2 overlaps with

the primary ORF of ATF4, this inhibits synthesis of the ATF4 protein. (b) In contrast, ternary complex levels are limited in stressed

conditions (i.e., when eIF2α is phosphorylated). As a result, the ribosome is unable to recruit another ternary complex in time to reinitiate at

uORF 2, releasing the primary ORF from repression by uORF 2, and allowing ATF4 protein synthesis
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downregulates the translation machinery to further limit global protein biosynthesis in the cell under conditions where
resources are limited.

2.2.1 | Activation of the integrated stress response

The ISR is triggered by the phosphorylation of eIF2α in response to several distinct sources of stress. Depending on the
stress, any of four protein kinases—heme-regulated inhibitor (HRI), protein kinase R (PKR), PKR-like ER kinase
(PERK), and general control nonderepressible 2 (GCN2)—are activated and phosphorylate eIF2α. Activation of each
kinase requires dimerization and autophosphorylation (Lavoie et al., 2014; Pakos-Zebrucka et al., 2016). Interestingly,
the localization of the kinases could confer subcellular specificity to the ISR, as HRI, PKR, and GCN2 are localized to
the cytosol, while PERK is localized to the ER membrane (Costa-Mattioli & Walter, 2020). GCN2 is highly conserved as
it is present from yeast to mammals and therefore has been extensively investigated (Pakos-Zebrucka et al., 2016). In
contrast, HRI, PKR, and PERK are generally present in metazoans (Taniuchi et al., 2016). Therefore, the four kinases
serve as critical regulators of ISR activation upon stress.

HRI is encoded by EIF2AK1 and is primarily expressed in erythroid cells (Han et al., 2001). In addition to two kinase
domains, HRI contains two heme-binding sites (Bhavnani et al., 2017; Donnelly et al., 2013; Figure 3) that respond to
cellular heme levels—the presence of heme inhibits HRI activation, while the absence of heme stimulates HRI
activation—to pair hemoglobin synthesis with heme availability (Bruns & London, 1965; Chefalo et al., 1998; Han
et al., 2001; Pakos-Zebrucka et al., 2016; Suragani et al., 2012). Heat and osmotic shock (Lu et al., 2001), hydrogen per-
oxide (Zhan et al., 2004), nitric oxide (Ill-Raga et al., 2015), arsenite treatment (Lu et al., 2001; McEwen et al., 2005),
and 26S proteasome inhibition (Yerlikaya et al., 2008) have also been demonstrated to activate HRI (Pakos-Zebrucka
et al., 2016; Table 1). In unstressed conditions, mice lacking HRI are normal, however, upon iron deprivation, their ery-
throid precursors undergo increased cell death causing the mice to be anemic (Han et al., 2001). Interestingly, upon
proteasome inhibition, HRI protein levels are elevated and HRI is activated in neurons with low baseline heme levels
resulting in reduced protein synthesis (Alvarez-Castelao et al., 2020). Thus, HRI functions in a cell-type-specific manner
via the ISR to promote proteostasis in heme-deficient environments.

The primary function of PKR, encoded by EIF2AK2, is to inhibit protein synthesis in response to viral infection to
prevent viral gene expression and aid the cellular response to infection (Eiermann et al., 2020). The expression of
EIF2AK2 is induced by interferon and, in addition to its kinase domain, PKR contains two N-terminal double-stranded
RNA-binding motifs (Donnelly et al., 2013; Mao et al., 2020; E. Meurs et al., 1990; Figure 3). PKR is activated by dsRNA
(Lemaire et al., 2008) that is often of viral origin, however, it can also be activated by endogenous dsRNA in the absence
of viral infection by stimuli such as mitochondrial dsRNA (Y. Kim et al., 2018), dsRNA created by Alu repeats
(W. M. Chu et al., 1998; Y. Kim et al., 2014), or the viral dsRNA mimic poly(I:C). In addition to dsRNA, the protein

FIGURE 3 Diagrams depicting the protein domains of the integrated stress response protein kinases. HRI contains two heme-binding

(HB) sites and two kinase domains (KD). PKR contains two N-terminal double-stranded RNA-binding domains (DSRBDs), and one

KD. PERK contains a signal peptide (SP), a transmembrane domain (TM), and a cytoplasmically located KD. GCN2 contains a pseudokinase

domain (PKD), a KD, a histidyl-tRNA synthetase-like domain (HisRS), and a ribosome-binding (RB) region.
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activator of PKR termed PACT binds to and directly activates PKR independently of dsRNA in response to a range of
stressors including cytokines, arsenite, and ceramide (Marques et al., 2008). Heparin and osmotic shock are also reported
activators of PKR (Anderson et al., 2011; George et al., 1996; Hovanessian & Galabru, 1987; Taniuchi et al., 2016; Table 1).
PKR is particularly important in the brain as Eif2ak2-deficient mice exhibit neurological abnormalities such as increased
cognition and memory, and hyperactive brain activity causing seizures (P. J. Zhu et al., 2011). Therefore, PKR preserves
cell health by reducing translation upon viral infection and promotes proper brain function.

Encoded by EIF2AK3, PERK is an ER transmembrane protein that functions in the unfolded protein response (UPR;
Pakos-Zebrucka et al., 2016). The C terminus of PERK faces the cytosol and includes its kinase domain, and the N terminus
lies within the ER lumen (Donnelly et al., 2013; Shi et al., 1998; Figure 3). PERK is highly expressed in the pancreas (Shi
et al., 1998) and is activatedbyERstress aswell asUV light (S.Wuet al., 2002), heat shock (Taniuchi et al., 2016), andosmotic
shock (Taniuchi et al., 2016; Table 1). Activation of PERK upon the accumulation of unfolded or misfolded proteins is
thought to occur by the direct binding of dysfunctional proteins to its luminal domain (P.Wang et al., 2018) or by the dissoci-
ation of BiP, an ER chaperone that is associated with PERK in the absence of stress (Bertolotti et al., 2000; Carrara
et al., 2015). PERK is required for cell survival in response toER stress, highlighting its importance as an effector of the ISR.

GCN2 is encoded by EIF2AK4 and contains a pseudokinase domain, protein kinase domain, histidyl-tRNA synthetase-like
domain, and ribosome-binding region (Donnelly et al., 2013; Ramirez et al., 1991; S. A. Wek et al., 1995; S. Zhu et al., 1996;
S. Zhu &Wek, 1998; Figure 3). While GCN2 is expressed broadly among tissues, its expression is particularly high in the brain
and liver (Berlanga et al., 1999; Sood et al., 2000). Amino acid deprivation activates GCN2 (Hinnebusch & Fink, 1983; R. C.
Wek et al., 1989) via a mechanism that may occur by its sensing accumulated uncharged tRNAs (Dong et al., 2000; Lageix
et al., 2015; H. Qiu et al., 2001; Qiu et al., 2002; Ramirez et al., 1992) or ribosome stalling and collisions (Harding et al., 2019;
Inglis et al., 2019; C. C.-C. Wu et al., 2020; Yan & Zaher, 2021). Thus, GCN2 is an important sensor of translation defects that
serves as a link between translation elongation and initiation. In addition to limited amino acids, GCN2 can also be activated
by UV irradiation (Deng et al., 2002; Taniuchi et al., 2016), hydrogen peroxide (Shenton et al., 2006; Taniuchi et al., 2016),
heat shock (Grousl et al., 2009; Taniuchi et al., 2016), and osmotic shock (Goossens et al., 2001; Hans et al., 2020; Taniuchi
et al., 2016; Table 1). Gcn2�/� mice are hypersensitive to the depletion of essential amino acids, exhibiting impaired fetal
development with reduced neonatal viability compared to wild-type mice (P. Zhang, McGrath, Reinert, et al., 2002). Thus, the
function of GCN2 is important to restrict protein synthesis in conditions of limited nutrients.

3 | RIBONUCLEOPROTEIN GRANULES AND THE INTEGRATED STRESS
RESPONSE

3.1 | Stress granules

A microscopically visible hallmark of the ISR is an increase in the formation and/or size and abundance of cytoplasmic
biomolecular condensates termed stress granules (Figure 4) and P-bodies that form through liquid–liquid phase

TABLE 1 Characteristics of the integrated stress response kinases

Gene Kinase Activators/stressors References

EIF2AK1 HRI Heme deprivation, heat shock, osmotic shock,
hydrogen peroxide, nitric oxide, arsenite
treatment, 26S proteasome inhibition

(Bruns & London, 1965; Chefalo et al., 1998; Han
et al., 2001; Ill-Raga et al., 2015; Lu et al., 2001;
McEwen et al., 2005; Pakos-Zebrucka et al., 2016;
Suragani et al., 2012; Yerlikaya et al., 2008; Zhan
et al., 2004)

EIF2AK2 PKR Double-stranded RNA, PACT, heparin, osmotic
shock

(Anderson et al., 2011; W. M. Chu et al., 1998; Eiermann
et al., 2020; George et al., 1996; Hovanessian &
Galabru, 1987; Y. Kim et al., 2014, 2018; Lemaire
et al., 2008; Marques et al., 2008; Taniuchi et al., 2016)

EIF2AK3 PERK ER stress, UV light, heat shock, osmotic shock (Taniuchi et al., 2016; S. Wu et al., 2002)

EIF2AK4 GCN2 Amino acid deprivation, UV light, hydrogen
peroxide, heat shock, osmotic shock

(Deng et al., 2002; Goossens et al., 2001; Grousl
et al., 2009; Hans et al., 2020; Hinnebusch &
Fink, 1983; Shenton et al., 2006; Taniuchi et al., 2016;
R. C. Wek et al., 1989)
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separation. Stress granules consist primarily of translationally arrested mRNAs, RNA binding proteins, and translation
factors (reviewed in P. Ivanov et al., 2019; Protter & Parker, 2016). They rapidly form following the inhibition of transla-
tion initiation by eIF2ɑ phosphorylation (N. Kedersha et al., 2000). Current models suggest that runoff of elongating
ribosomes leaves mRNAs exposed to RNA binding proteins such as G3BP1/2 (Ras GTPase-activating protein-binding
protein 1/2) and TIA-1. Multivalent RNA–RNA, RNA–protein and protein–protein interactions between low-
complexity or intrinsically disordered protein domains then promote mRNP phase separation into stress granules
(reviewed in Hofmann et al., 2021).

Transcriptome analysis of purified stress granule cores has revealed that mRNAs from nearly all genes localize to
stress granules, but that increased mRNA length and translation efficiency correlates with enrichment (Khong
et al., 2017). Likewise, longer isoforms of the same gene are more likely to be recruited to granules during ER stress
(Namkoong et al., 2018). Interestingly, mRNAs containing AU-rich elements (AREs) are also enriched in cytoplasmic
granules during ER stress, heat-shock, and arsenite stress, as are proto-oncogenes in which AREs are often found
(Namkoong et al., 2018). MRNAs localized to stress granules are largely nontranslating, and 60S ribosomal proteins are
depleted from stress granules (Nancy Kedersha et al., 2002; Moon et al., 2019). However, live-cell and single mRNA
molecule imaging experiments indicate that polysome-associated mRNAs can dynamically interact with stress granules,
but these events are relatively rare and the interactions are generally short-lived compared to nontranslating mRNAs
(Mateju et al., 2020; Moon et al., 2019). Following the resolution of stress, mRNAs sequestered within stress granules
are thought to resume translation, but interestingly, single-molecule experiments showed that translation from fluores-
cently labeled mRNA reporters occurred only once stress granules were fully disassembled (Moon et al., 2019). Thus,
stress granules are primarily composed of translationally repressed RNAs thought to be assembled into pre-initiation
complexes.

Despite the fact that the vast majority of translation is arrested during the ISR, only approximately 10%–13% of cel-
lular mRNA is targeted to stress granules (Khong et al., 2017; Namkoong et al., 2018). Furthermore, while virtually all
mRNA transcripts expressed in the cell could be detected in stress granules at some level, only a small subset of genes
have >50% of their mRNA molecules sequestered within stress granules (Khong et al., 2017). This is consistent with evi-
dence that stress granules are not necessary for mRNA translational suppression, as this still occurs through ISR activa-
tion in genetically manipulated cells that cannot form stress granules (Kedersha et al., 2016). However, there is a large

FIGURE 4 Polyadenylated RNA is localized to stress granules during arsenite stress. Human U-2 OS cells stably expressing the stress

granule protein GFP-G3BP1 (green) were stressed with sodium arsenite (0.5 mM) for 45 min. Fluorescence in situ hybridization was

performed with oligo(dT)-Cy3 probes (red) to detect polyadenylated mRNAs, and nuclei were visualized with DAPI (scale bar 10 μM).

Reprinted with permission from Moon et al., 2020.
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degree of heterogeneity with the extent to which mRNAs are recruited to stress granules (Khong et al., 2017), and some
mRNAs that are needed for promoting recovery from stress are mostly excluded from stress granules, as has been
observed for HSP70 and HSP90 mRNAs following heat stress or arsenite stress (Moon et al., 2020; Stöhr et al., 2006).
Further, quantitative proteomics and genome-wide RNA-seq analysis demonstrated the transcripts encoding newly
translated proteins during arsenite stress are depleted from stress granules (Baron et al., 2019). As such, by sequestering
a portion of translationally repressed mRNAs, stress granules may facilitate the continued translation of select mRNAs
during the ISR.

Although their cellular function is not fully established, disruption of stress granule biology is implicated in human
disease. Mutations in stress granule resident RNA binding proteins with low-complexity or intrinsically disordered
domains such as TIA-1 (Mackenzie et al., 2017), TDP-43 (TAR DNA-binding protein; van Deerlin et al., 2008), FUS
(fused in sarcoma; Vance et al., 2009), and hnRNPA2/B1 (heterogeneous nuclear ribonucleoprotein A2/B1; H. J. Kim
et al., 2013) cause amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Current models propose
that these mutations alter stress granule dynamics and may help seed pathological protein inclusions that are a hall-
mark of these diseases (Wolozin & Ivanov, 2019).

3.2 | Processing bodies

Like stress granules, P-bodies are cytoplasmic RNP granules that form through liquid–liquid phase separation. They are
present in steady-state conditions in unstressed cells but, also like stress granules, increase in size and abundance dur-
ing cellular stress caused by nutrient deprivation, hypo- or hyper-osmolarity, and UV radiation (Teixeira et al., 2005).
While there is considerable overlap in the protein components of both cytoplasmic granule types, P-bodies contain the
machinery for both 50–30 and 30–50 exonucleolytic mRNA degradation, which is absent from stress granules (reviewed
in P. Ivanov et al., 2019; Luo et al., 2018).

Like stress granules, mRNA reporters interact with P-bodies in mammalian cells in either a highly transient or
highly stable manner (Moon et al., 2019; Pitchiaya et al., 2019). Recent sequencing analysis of the mRNA content from
fluorescence-activated particle sorted P-bodies indicate that about one-fifth of total cellular mRNAs localize to P-bodies
and that P-body-enriched transcripts are more poorly translated and have more variable poly(A) tail lengths, compared
to total cellular mRNAs (Hubstenberger et al., 2017). Additionally, mRNA reporters that are translationally repressed
via microRNA (miRNA) targeting are more likely to be sequestered within P-bodies than those that are not trans-
lationally repressed (Pitchiaya et al., 2019). These observations are consistent with data indicating that translation fac-
tors (with the exception of eIF4E, which is bound to its inhibitor 4E-T within P-bodies) and 40S ribosomal proteins,
which are enriched in stress granules, are depleted from P-bodies (Hubstenberger et al., 2017; Matheny et al., 2019;
Teixeira et al., 2005). Furthermore, although not necessary for their recruitment (Brengues & Parker, 2007), mRNAs
localized to P-bodies are often deadenylated and PABP is depleted within these structures in mammalian cells (Nancy
Kedersha et al., 2005; Zheng et al., 2008). While P-bodies are present in unstressed conditions when stress granules are
absent, during the ISR the mRNA transcriptome of P-bodies shifts and become very similar to the transcriptome of
stress granules (Matheny et al., 2019). Together, these findings strongly suggest that translation is a key determinant
of mRNA localization to both stress granules and P-bodies. Thus, the ISR increases the pool of cellular mRNAs that can
be recruited into P-bodies via the global suppression of translation.

Three pieces of evidence suggest that mRNAs may be degraded within P-bodies. First, P-bodies are enriched in com-
ponents of the exonucleolytic degradation machinery. Second, decay intermediates of Xrn1-resistant mRNAs accumu-
late within P-bodies in yeast (Sheth & Parker, 2003), and XRN1-resistant viral RNAs colocalize with P-bodies in human
cells (Pijlman et al., 2008). Third, yeast mutants lacking Xrn1 have enlarged P-bodies (Sheth & Parker, 2003). However,
recent single-molecule imaging studies have found that the signal from fluorescent-protein-labeled PP7 and/or
MS2-tagged mRNAs decay in the cytoplasm, and their decay intermediates do not colocalize with P-body markers
(Horvathova et al., 2017; Tutucci et al., 2018). This is consistent with RNA-seq experiments that failed to identify trun-
cated mRNA decay intermediates within P-bodies in human cells (Hubstenberger et al., 2017), although it is possible
that such decay intermediates are degraded too rapidly in wild-type cells for their capture and identification. Addition-
ally, mRNAs localized to P-bodies can return to being actively translated (Brengues et al., 2005), and mRNA degrada-
tion still occurs in cells lacking P-bodies (Arribas-Layton et al., 2016; Eulalio et al., 2007). Therefore, like stress
granules, P-bodies appear to serve as reservoirs for poorly translated mRNAs, but the exact role they play in mRNA
decay is still unclear.
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4 | MRNA DEGRADATION AND THE INTEGRATED STRESS RESPONSE

4.1 | Mechanisms of mRNA degradation

Cellular mRNA turnover is another important mechanism by which gene expression is regulated. The median mamma-
lian mRNA half-life is 3.4 h, but this ranges widely from less than an hour to more than a day (Tani et al., 2012). Many
factors influence the rate at which an mRNA is degraded, including its cellular function (i.e., housekeeping genes are
generally longer lived; Tani et al., 2012), its degree of secondary structure (Mauger et al., 2019), the length of its 30-UTR
as well as the number of miRNA and protein binding sites (Spies et al., 2013), its rate of translation (as reduced transla-
tion is associated with more rapid decay; Presnyak et al., 2015), RNA modifications (reviewed in Boo & Kim, 2020), spe-
cific RNA motifs, and cellular conditions such as cellular stress, as will be discussed below.

The bulk of mammalian mRNA decay occurs through either 50–30 or 30–50 exonucleolytic degradation (reviewed in
Mugridge et al., 2018), with endonucleases contributing in specialized circumstances such as surveillance pathways
occurring with ribosome-associated quality control (Section 5). In both exonucleolytic pathways, deadenylation is the
initial rate-limiting step and is carried out by either the PAN2-PAN3 or CCR4-NOT complexes (reviewed in C.-Y.
A. Chen & Shyu, 2011; Muhlrad et al., 1994; Mugridge et al., 2018). Degradation of an mRNA's poly(A) tail excludes
PABP, which both destabilizes the mRNA and suppresses its translation. In the 50–30 exonucleolytic decay pathway,
once deadenylation is complete, the Dcp1–Dcp2 decapping complex is recruited to the mRNA through interactions
either between its cofactor DD6X and the deadenylation complex or with its other cofactors that bind the shortened
poly(A) tail (Y. Chen et al., 2014; Chowdhury et al., 2007; Mugridge et al., 2018). Decapped mRNAs become vulnerable
to processive degradation by the 50–30 exoribonuclease Xrn1 (Hsu & Stevens, 1993).

The 30–50 exonucleolytic decay is mediated by the large, multi-protein RNA exosome complex (reviewed in Łabno
et al., 2016). The RNA exosome has widespread roles in the processing and degradation of both nuclear and cytoplasmic
RNAs, with many target-specific cofactors (reviewed in Kilchert, 2020). For human cytoplasmic mRNA degradation,
the core RNA exosome with the DIS3L catalytic subunit is recruited to the 30-end of deadenylated or cleaved transcripts
(Kilchert, 2020; Łabno et al., 2016). For degradation of defective mRNAs first cleaved by endonucleases, the SKI com-
plex is important for RNA exosome recruitment (van Hoof et al., 2002). For deadenylated ARE-containing mRNAs,
ARE binding proteins play a role in exosome recruitment (C. Y. Chen et al., 2001). After near complete degradation,
the scavenging decapping enzyme DCPS removes the 50 cap from the remaining 50 mRNA fragment (reviewed in Milac
et al., 2014).

4.2 | RNA stability during the integrated stress response

Global RNA stability is highly regulated during acute stresses including those that activate the ISR. Changes in the
localization and/or availability of specific RNA binding proteins that mediate mRNA stability and decay occur during
stress and mediate regulated changes in mRNA stability. For example, short-lived transcripts containing AREs in their
30-UTRs are stabilized upon heat stress (Laroia et al., 1999), proteasome inhibition stress (Laroia et al., 1999), and UV-C
stress (W. Wang et al., 2000). Reorganization of RNA–protein complexes may underlie ARE-containing mRNA stability
during stress. For example, the RNA binding protein AUF1 (ARE/poly[U]-binding/degradation factor 1) destabilizes
ARE-containing mRNAs (Gratac�os & Brewer, 2010), and AUF1 relocalization from the cytoplasm to the nucleus during
heat stress or proteasome inhibition by MG-132 was associated with ARE-containing transcript stabilization in these
contexts (Laroia et al., 1999). Additionally, the nuclear protein human antigen R (HuR) interacts with ARE-containing
transcripts such as the mRNA encoding the cyclin-dependent kinase inhibitor p21 in the cytoplasm during UV-C stress,
and genetic depletion experiments demonstrated HuR was required for p21 mRNA stabilization upon UV-C stress in
mammalian cells (W. Wang et al., 2000). Relocalization of HuR from the nucleus to the cytoplasm was also observed
when cells were exposed to other stressors including hydrogen peroxide (W. Wang et al., 2000). Further, zipcode bind-
ing protein 1 (ZBP1) localizes to stress granules and was required for the stabilization of specific mRNAs such as c-myc,
and not others, during the ISR in response to heat and arsenate stress (Stöhr et al., 2006). In response to arsenite stress,
changes in alternative mRNA polyadenylation are also associated with changes in mRNA stability. For example, bind-
ing of the cytotoxic granule-associated RNA binding protein TIA-1 to mRNAs with longer alternative 30-UTRs is associ-
ated with their destabilization (Zheng et al., 2018). Therefore, regulated changes in the localization and binding targets
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of stabilizing and destabilizing mRNA binding proteins can alter the stability of specific classes of mRNAs during acute
stress and remodel the transcriptome.

A second mechanism by which mRNA turnover is regulated during the ISR is via downregulation of the general
RNA decay machinery. Short-lived mRNA reporters, and the transcripts of induced or constitutively expressed endoge-
nous genes are stabilized upon UV-B and UV-C stresses (Blattner et al., 2000; Bollig et al., 2002; Gowrishankar
et al., 2005; W. Wang et al., 2000; White et al., 1997), ER stress (Kawai et al., 2004), and arsenite stress (Horvathova
et al., 2017) in mammalian cells. Global mRNA stabilization is also observed in baker's yeast upon severe osmotic stress
(Romero-Santacreu et al., 2009), glucose deprivation (Jona et al., 2000), and hyperosmotic glucose stress (Greatrix &
van Vuuren, 2006). Intriguing evidence supports the idea that reduced deadenylation activity underlies global RNA
stabilization in response to many acute stressors that activate the ISR. First, polyadenylated RNAs accumulate upon
hyperosmotic glucose stress (Greatrix & van Vuuren, 2006) and deadenylation rates are reduced upon glucose starva-
tion (Hilgers et al., 2006; Jona et al., 2000), potassium chloride stress, and heat stress (Hilgers et al., 2006) in yeast.
Second, the rate of deadenylation of reporter mRNAs in mammalian cells is slowed during the response to arsenite
stress (Yamagishi et al., 2014), hydrogen peroxide stress, sorbitol, and heat (Gowrishankar et al., 2006). These reports
support the idea that this phenomenon is conserved and generalizable across the response to many acute stressors.
Stress-induced deadenylation suppression is not necessarily limited to those stress conditions that activate the ISR.
Deadenylation is dramatically slowed during heat stress, which causes eIF2ɑ phosphorylation. However, deadenylation
is also suppressed upon potassium chloride or glucose deprivation stresses, which do not cause eIF2ɑ phosphorylation
(Ashe et al., 2000; Goossens et al., 2001) in baker's yeast (Hilgers et al., 2006). Thus, downregulation of the rate-limiting
step of the major mRNA decay pathway is an evolutionarily conserved response to acute stress.

Three pieces of evidence suggest the mechanism by which deadenylation and decay rates are slowed during acute
stress is through down-regulation of the major RNA degradation machinery in the cell. First, genetic depletion of either
the major deadenylase ccr4 to impair the activity of the Ccr4p/Pop2p/Notp complex, or the deadenylase pan2 to inhibit
the Pan2p/Pan3p complex did not result in increased deadenylation rates of reporter mRNAs during osmotic stress in
baker's yeast (Hilgers et al., 2006). This observation suggests that the activities of both Ccr4p/Pop2p/Notp and Pan2p/
Pan3p complexes are inhibited during acute stress. Second, the deadenylase Pan3 and the Caf1 deadenylase-interacting
protein Tob (Hosoda et al., 2011) are degraded rapidly upon arsenite stress when the deadenylation of mRNA reporters
is significantly delayed in human cells (Yamagishi et al., 2014). Thus, the selective degradation of key mRNA decay fac-
tors is likely an important mechanism by which deadenylation is downregulated during acute stress. Third, the 50–30
decay machinery may also be compromised during acute stress. Reporter mRNAs sensitive to 50–30 mediated degrada-
tion by Xrn1 are stabilized in yeast spheroplasts upon amino acid deprivation caused by 3-AT (3-amino-1,2,4-triazole;
Benard, 2004). Further, reporter mRNAs in yeast strains lacking the deadenylation factors pan2 and ccr4 still display a
40% increase in half-life upon potassium chloride hyperosmotic stress (Hilgers et al., 2006). Of note, global mRNA stabi-
lization by suppression of deadenylation is unlikely due to global suppression of translation. The suppression of
deadenylation occurs prior to translation shutoff in UV-B stress (Gowrishankar et al., 2006). Additionally, hyperosmotic
stress causes suppressed deadenylation in yeast in the presence or absence of cycloheximide, which traps mRNAs in
polysomes (Hilgers et al., 2006). Finally, arsenite stress suppresses the degradation of reporter mRNAs in the presence
or absence of HRI and phosphorylated eIF2ɑ (Yamagishi et al., 2014). Therefore, specific changes in the abundance
and/or activities of major mRNA decay factors may drive global stabilization of polyadenylated mRNAs during acute
stress. Such a regulatory mechanism could enable the cell to preserve the constitutively expressed transcriptome to
re-enter translation upon the resolution of stress.

5 | RIBOSOME-ASSOCIATED QUALITY CONTROL AND THE INTEGRATED
STRESS RESPONSE

In addition to general turnover, cells have evolved specialized mRNA surveillance mechanisms to rapidly detect and
degrade defective mRNAs through processes linked with the ribosome-associated quality control (RQC) pathway. By
operating co-translationally, RQC helps guard against the production of miscoded or misfolded proteins in real time,
before the faulty peptide is fully synthesized and released into the cell (reviewed in Brandman & Hegde, 2016; Simms
et al., 2017). Three mRNA surveillance pathways synergize with the RQC machinery to promote rapid degradation of
faulty mRNA. MRNA defects detected by RQC include (1) premature termination codons (PTCs), often a result of mis-
splicing, undergo nonsense-mediated decay (NMD; Losson & Lacroute, 1979), (2) lack of a proper stop codon causes
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nonstop decay (NSD; Frischmeyer et al., 2002; van Hoof et al., 2002), and (3) unresolvable RNA secondary structure
(Doma & Parker, 2006), mRNA nucleotide damage (Simms et al., 2014; Yan et al., 2019), or mRNA truncation products
(Meaux & Van Hoof, 2006) undergo no-go decay (NGD). The unifying consequence of each of these defects is ribosome
stalling. In addition to mRNA defects, ribosome stalling can also be caused by insufficiencies in amino acid or tRNA
availability.

Despite being triggered by different types of defective mRNA or translation elongation defects, each RQC pathway
accomplishes the same overall outcome—degradation of both the instigating mRNA and the nascent peptide—through
the same general steps. First, the stalled ribosome is detected by the cell. In NGD, and potentially NSD, stalling results
in ribosome collisions, which are sensed by the RQC-trigger complex (Matsuo et al., 2017). In NMD, ribosomes stalled
at PTCs are recognized by up-frameshift proteins associated with downstream exon-junction complexes (P. V. Ivanov
et al., 2008; Kashima et al., 2006; Neu-Yilik et al., 2017; K. T. Powers et al., 2020).

Next, RQC-specific factors mediate the release of the stalled ribosome and initiate degradation of the mRNA
through its endonucleolytic cleavage (Doma & Parker, 2006). In NMD, SMG6 is the endonuclease responsible for
mRNA cleavage (Eberle et al., 2009), whereas recent reports identified Cue2 as the endonuclease involved in NGD in
yeast (D'Orazio et al., 2019) and its homolog NONU-1 as the endonuclease required for both NGD and NSD in
Caenorhabditis elegans (Glover et al., 2020). MRNA degradation is completed by subsequent 50–30 and 30–50
exonucleolytic degradation of the resulting mRNA fragments by Xrn1 and the exosome, respectively (Doma &
Parker, 2006). As for the nascent peptide, foundational genetics and structural studies in Saccharomyces cerevisiae rev-
ealed that it is typically targeted for degradation following ribosome release. Nuclear export mediator factor (NEMF)
recruits its cofactor and E3 ligase Listerin (LTN1) to 60S ribosomal subunits and ubiquitinate the nascent chain
(Bengtson & Joazeiro, 2010; Lyumkis et al., 2014). Finally, the AAA+ ATPase VCP (valosin-containing protein, also
known as p97) promotes the extraction of the nascent protein from the 60S ribosome and targets it to the proteasome
or lysosome for degradation (Defenouillère et al., 2013; Verma et al., 2013).

However, recent studies from our group and others applying single mRNA imaging approaches suggest that mRNA
degradation may not always follow ribosome stalling in human cells. During acute cellular stress by arsenite or heat,
inhibition of VCP prevents nascent peptide and ribosome dissociation from a subset of constitutively expressed mRNAs
through a pathway that also involves LTN1, NEMF, and the proteasome (Moon et al., 2020). This may suggest either
the existence of feedback mechanisms that restricts ribosome–nascent protein–mRNA dissociation when downstream
RQC factors are inhibited, or a fourth RQC pathway that specifically acts in response to ribosome stalling under certain
stress conditions, in which LTN1, NEMF, VCP, and the proteasome play a role before ribosome splitting. Furthermore,
nascent proteins accumulate on mRNA reporters encoding poly-lysine tracts, suggesting ribosome pileups, without
causing a substantial reduction in mRNA abundance (Goldman et al., 2021). As such, mRNAs in human cells that are
targeted by the RQC pathway may not necessarily be degraded (Goldman et al., 2021; Moon et al., 2020). These results
suggest that during cellular stress the mRNA surveillance pathways may be uncoupled from the RQC pathway.

The interplay between the ISR and RQC was further established in recent studies showing that widespread ribo-
some collisions can overwhelm the RQC system (C. C.-C. Wu et al., 2020). Such collisions are sensed by the kinase
ZAKɑ, which triggers GCN2-mediated eIF2ɑ phosphorylation in human cells (C. C.-C. Wu et al., 2020). Multiple dis-
tinct cellular stressors are capable of causing global ribosome collisions, including amino acid starvation and treatment
with intermediate concentrations of translation elongation inhibitors, which permits a subset of ribosomes to continue
translating until colliding with paused ribosomes that are effectively targeted by the inhibitors (C. C.-C. Wu
et al., 2020). Additionally, environmental or chemical stressors that cause widespread mRNA damage can also induce
widespread ribosome collisions. This is the case with UV irradiation, which results in the disproportionate stalling of
ribosomes at codons containing adjacent pyrimidines (C. C.-C. Wu et al., 2020), presumably due to the formation
of pyrimidine dimers (Jackle & Kalthoff, 1978). Furthermore, in yeast, chemical agents that cause mRNA alkylation or
oxidation also cause eIF2ɑ phosphorylation via GCN2 (Yan & Zaher, 2021). As a downstream consequence of ISR
activation, failure to resolve ribosome collisions triggers apoptosis, which emphasizes the importance of RQC to cellular
fitness (C. C.-C. Wu et al., 2020).

The nervous system appears to be particularly vulnerable to failures in RQC. Mutations or isoforms of genes
encoding multiple RQC proteins, including LTN1 (J. Chu et al., 2009), NEMF (Martin et al., 2020), and VCP (Johnson
et al., 2010; Watts et al., 2004), cause neurodegeneration. Moreover, mice with a mutation in a single tRNA gene
develop severe neurodegeneration when GTPBP1 or GTPBP2 are also mutated (R. Ishimura et al., 2014; Ishimura
et al., 2016; Terrey et al., 2020). GTPBP1 and GTPBP2 are GTPases that share homology with HBS1L, a ribosome release
factor required for NGD and NSD, and promote the resolution of stalled ribosomes caused by the tRNA insufficiency in
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these mice (R. Ishimura et al., 2014; Ishimura et al., 2016; Terrey et al., 2020). Before degeneration, the ISR is activated
in the neurons of these mice through GCN2 (R. Ishimura et al., 2014; Ishimura et al., 2016; Terrey et al., 2020). Thus,
an important area of future work will examine the role of the ISR in the increased vulnerability of neurons to distur-
bances in RQC.

6 | GENETIC DISEASES OF THE INTEGRATED STRESS RESPONSE

Numerous rare genetic diseases are caused by mutations in the genes encoding at least seven of the ISR components
described to date that drive the ISR (Tables 2–5). Alleles of the eIF2ɑ kinases HRI (EIF2AK1), PKR (EIF2AK2), PERK
(EIF2AK3), and GCN2 (EIF2AK4) are associated with developmental syndromes and diseases that affect a variety of
organ systems including the nervous, endocrine, circulatory, and skeletal system. Mutations in the constitutively
expressed eIF2ɑ phosphatase regulatory subunit CReP (PPP1R15B) are associated with intellectual disability and diabe-
tes, variants in the gamma subunit of the eIF2 complex cause an X-linked neurodevelopmental syndrome, and alleles
of any of the five eIF2B genes are associated with the leukodystrophy VWM disease. This growing class of genetic disor-
ders reveals the importance of the ISR in human development and health.

6.1 | Genetic diseases of EIF2S3 (eIF2γ)

Mutations in EIF2S3, the gene that codes for eIF2γ of the eIF2 complex, cause the rare, X-linked intellectual disability
(XLID) MEHMO syndrome (OMIM #300148; Skopkova et al., 2017; Table 2). The acronym MEHMO represents the pri-
mary clinical symptoms of the syndrome—mental retardation, epileptic seizures, hypogonadism, hypogenitalism,
microcephaly, and obesity. Individuals with MEHMO syndrome typically exhibit large ears and talipes and, in severe
cases, are diagnosed with diabetes. As an X-linked recessive disorder, all reported cases of MEHMO syndrome have
been males (Delozier-Blanchet et al., 1989; Leshinsky-Silver et al., 2002; Skopkova et al., 2017; Steinmüller et al., 1998).
The symptoms of MEHMO syndrome were first described in two brothers in 1989 (Delozier-Blanchet et al., 1989). In
1998 following the investigation of a large three-generation family with five affected males, the syndrome was termed
MEHMO, and the disease locus was determined to be Xp21.1–p22.13 (Steinmüller et al., 1998). It was recently deter-
mined by massively parallel sequencing of four families affected by MEHMO syndrome that causative mutations lie in
EIF2S3 (Skopkova et al., 2017). The most prevalent mutation uncovered was a four base pair deletion that created a
frameshift and premature stop codon (c.1394_1397delTCAA p.Ile465Serfs*4), and individuals with the mutation dis-
played the full range of severe MEHMO syndrome symptoms, often with diabetes. Several missense mutations in
EIF2S3 (c.324T>A p.Ser108Arg, c.665T>C p.Ile222Thr, c.777T>G p.Ile259Met, and c.451G>C p.Val151Leu) have also
been identified and linked to XLIDs with a subset of MEHMO syndrome symptoms and a range of severity (Borck
et al., 2012; Moortgat et al., 2016; Skopkova et al., 2017; Tarpey et al., 2009), including the recent report of three related
males with mild intellectual disability, hypoglycemia, and hypopituitarism, specifically with deficient growth hormone
and thyroid-stimulating hormone, caused by the substitution of a conserved proline to a serine (c.1294C>T p.Pro432Ser;
Gregory et al., 2019). Interestingly, exome sequencing did not reveal mutations in the EIF2S3 coding regions or adjacent
introns in three males from two families affected by MEHMO syndrome (Skopkova et al., 2017), indicating that

TABLE 2 Disease-associated alleles of EIF2S3

Gene Alleles Disease/syndrome References

EIF2S3 c.1394_1397delTCAA (p.Ile465SerfsTer4) MEHMO syndrome and X-linked
intellectual disability

(Moortgat et al., 2016)

EIF2S3 c.433A>G (p.Met145Val) MEHMO syndrome (Moortgat et al., 2021)

EIF2S3 c.665T>C (p.Ile222Thr); c.777T>G (p.
Ile259Met); c.451G>C (p.Val151Leu)

X-linked intellectual disability (Borck et al., 2012; Moortgat
et al., 2016; Tarpey et al., 2009)

EIF2S3 c.1294C>T (p.Pro432Ser) X-linked hypopituitarism with
glucose dysregulation

(Gregory et al., 2019)
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MEHMO syndrome in these patients may be due to variants in a gene other than EIF2S3 (Delozier-Blanchet
et al., 1989; Leshinsky-Silver et al., 2002; Skopkova et al., 2017).

Studies have been conducted to determine how disease-associated variants of EIF2S3 impact cell health and lead to
the extreme symptoms of MEHMO syndrome. The frameshift mutation that generates a truncated protein
(c.1394_1397delTCAA p.Ile465Serfs*4) is perhaps the most studied EIF2S3 variant to date (Skopkova et al., 2017;
Young-Baird et al., 2020). The eIF2 complex unites with GTP and Met-tRNAi to form the ternary complex and initiates
translation at an AUG start codon. Work in yeast showed that cells expressing the frameshift mutation
(c.1394_1397delTCAA p.Ile465Serfs*4) exhibited decreased translation start codon fidelity and increased expression of
the ISR target gene GCN4 (ATF4 in mammals; Skopkova et al., 2017). This work was expanded upon in patient-derived
cells as it was demonstrated that frameshift mutants displayed increased protein levels of ATF4 and its target CHOP,
as well as GADD34 (Skopkova et al., 2017; Young-Baird et al., 2020). In addition, global translation and cell viability
are reduced in patient-derived induced pluripotent stem cells (iPSCs) expressing the frameshift mutation
(c.1394_1397delTCAA p.Ile465Serfs*4; Young-Baird et al., 2020). Global translation suppression and expression of
ATF4, DDIT3 (CHOP), and PPP1R15A (GADD34) are exacerbated in frameshift mutants treated with the ISR activator
thapsigargin (Young-Baird et al., 2020; Figure 5a,b). Thus, the ISR is active in frameshift mutants in the absence of
stress and is hyperactive in the presence of stress. Altogether, these findings are likely explained by the discovery that
eIF2α and Met-tRNAi binding to the ternary complex is disrupted in frameshift mutants (Young-Baird et al., 2020).

The MEHMO syndrome-associated EIF2S3 missense mutation c.665T>C p.Ile222Thr is located in the GTP-binding
domain of eIF2γ and has also been examined. Like the frameshift variant, the missense variant caused increased GCN4
expression and impaired translation start codon fidelity (Borck et al., 2012; Skopkova et al., 2017). In contrast to the
frameshift variant, the binding of eIF2β to eIF2γ is disrupted in the missense mutant (Borck et al., 2012). Consistent
with disease severity, yeast expressing the missense variant associated with mild symptoms (c.1294C>T p.Pro432Ser)
displayed only slightly elevated GCN4 expression and minimally defective translation start codon fidelity (Gregory
et al., 2019).

Despite a significant amount of work, many questions remain surrounding how EIF2S3 mutations lead to MEHMO
syndrome. First, how do all of the reported EIF2S3 variants affect the function of eIF2γ and cell health? The frameshift
variant c.1394_1397delTCAA p.Ile465Serfs*4 disrupts the binding of eIF2α to eIF2γ (Young-Baird et al., 2020), while
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the missense variant c.665T>C p.Ile222Thr disrupts the binding of eIF2β to eIF2γ (Borck et al., 2012). Thus, it will be
important to determine if the additional EIF2S3 missense variants affect interactions within the eIF2 complex and/or
with other initiation factors. Second, what cell types are targeted by EIF2S3 mutations? It is evident that MEHMO syn-
drome targets the central nervous system (Delozier-Blanchet et al., 1989; Leshinsky-Silver et al., 2002; Skopkova
et al., 2017; Steinmüller et al., 1998). Interestingly, iPSCs harboring the frameshift mutation demonstrate impaired neu-
ronal differentiation (Young-Baird et al., 2020). However, various cell types support the proper function of the central
nervous system. It will be interesting to determine if specific cell types besides neurons are impacted by alleles of
EIF2S3 associated with MEHMO syndrome. Ultimately, it will be critical to establish animal models of MEHMO syn-
drome to examine the effects of disease-associated variants and potential therapies in multicellular organisms. Intrigu-
ingly, knockdown of zebrafish eif2s3 mimicked some clinical symptoms of MEHMO syndrome including microcephaly
suggesting that zebrafish may be an informative model organism (Moortgat et al., 2016).

6.2 | Genetic diseases of EIF2B1–5 (eIF2B)

VWM disease or childhood ataxia with central nervous system hypomyelination (OMIM #603896) is a chronic progres-
sive leukodystrophy that is caused by autosomal recessive mutations in any of the genes that encode the five eIF2B sub-
units (EIF2B1, EIF2B2, EIF2B3, EIF2B4, and EIF2B5; Bugiani et al., 2018; Leegwater et al., 2001; M. S. van der Knaap
et al., 2002). Over 180 different mutations associated with VWM and the systemic eIF2B-related disorders have been
reported to date (Table 3). Missense alleles of EIF2B5 are the most frequently observed (Pavitt & Proud, 2009). The
symptoms of VWM include progressive and episodic hypomyelination, white matter loss, cerebellar ataxia, spasticity,
cataracts, and optic atrophy, and is invariably fatal (Hanefeld et al., 1993; Schiffmann et al., 1994; M. S. van der Knaap
et al., 1997). Importantly, neurologic deterioration is often triggered by febrile infection, physical trauma to the head, or
severe fright responses (Hanefeld et al., 1993; Schiffmann et al., 1994; M. S. van der Knaap et al., 1997). Because phos-
phorylated eIF2ɑ is elevated in models of traumatic brain injury (Chou et al., 2017) and in response to pro-
inflammatory cytokines such as J2 prostaglandins (Tauber & Parker, 2019; Weber et al., 2004), one possibility is that
defects in the ISR underlie such episodes of neurologic deterioration. Additionally, females with VWM may also exhibit
ovarian failure (Bugiani et al., 2018; Fogli et al., 2003; Mathis et al., 2008). VWM affects infants, children, adolescents,
and adults, however, patients with late onset VWM experience milder symptoms than patients with early-onset VWM
(Bugiani et al., 2018; M. S. van der Knaap et al., 1998). In the first study that related variants in the EIF2B genes with
VWM, 16 distinct mutations in EIF2B5 and six distinct mutations in EIF2B2 were identified, and the majority were mis-
sense mutations (Leegwater et al., 2001). Since the initial report, a plethora of mutations, largely missense, associated
with VWM in all five EIF2B genes have been described (M. S. van der Knaap et al., 2002). Mutations in EIF2B affect
eIF2B in a number of ways and have been demonstrated to alter its GEF activity, modify binding to its substrate eIF2,
and impair its assembly and stability (Leng et al., 2011; R. Liu et al., 2011; W. Li et al., 2004; Matsukawa et al., 2011;
X. Wang et al., 2012; Wortham & Proud, 2015; Figure 5a,c).

As the GEF for eIF2, eIF2B promotes the exchange of GDP for GTP to permit translation initiation. Thus, mutations
that reduce the function of eIF2B would be expected to decrease global translation. Unexpectedly, cells with EIF2B
mutations display baseline protein synthesis levels similar to wild-type cells (Kantor et al., 2005; Moon & Parker, 2018a;
Sekine et al., 2016; van Kollenburg et al., 2006; Wong et al., 2018). However, upon activation of the ISR, global transla-
tion, which is normally suppressed during the ISR, is hyper-suppressed in EIF2B mutants (Moon & Parker, 2018a;
Sekine et al., 2016; Wong et al., 2018). Moreover, VWM patient-derived EIF2B2 mutant lymphoblasts exhibit prolonged
eIF2α phosphorylation and global translation repression, as well as delayed GADD34 expression, which is consistent
with delayed global translation restoration due to extended eIF2α phosphorylation (Moon & Parker, 2018a). As a result,
EIF2B2 mutants are vulnerable to ER stress (Moon & Parker, 2018a). One consequence of such a delay in the dephos-
phorylation of p-eIF2α may be that cells experiencing acute stress may enter into a prolonged, chronically stressed state.
In support of this idea, VWM mouse models and VWM patient-derived brain tissue also exhibit defects in the ISR. Spe-
cifically, in the absence of stress, the expression of ATF4 and its targets are increased and the levels of p-eIF2α are
decreased in these systems (Abbink et al., 2019). It is interesting to note that VWM-associated mutations do not consis-
tently impact stress-induced RNP granules in the absence of gcn2 (the only eIF2 kinase in yeast) in yeast models, but P-
bodies were elevated in EIF2B2 mutant lymphoblasts derived from patients with VWM and in several yeast strains
expressing analogous EIF2B2 and EIF2B5 mutations to those associated with VWM in unstressed conditions (Moon &
Parker, 2018b). A low level of translationally repressed mRNAs could contribute to elevated P-body formation in these
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contexts. Thus, partial loss of eIF2B function may specifically impact the ability of the cell to respond to acute stress
rapidly and reversibly.

An important outstanding question is how specific mutations confer a wide range of phenotypes in terms of disease
severity and tissue specificity of eIF2B-related multisystem disorders that can often be categorized as VWM. While it
may be predicted that disease severity correlates with the degree to which the causative EIF2B mutation alters the func-
tion of eIF2B, this does not always seem to be the case. For instance, some EIF2B mutations that are linked to severe
VWM do not affect the GEF activity or assembly of eIF2B (R. Liu et al., 2011). Furthermore, a recent study demon-
strated that, while severe phenotype-associated mutations generally localized to regions of eIF2B predicted to signifi-
cantly impact its function, and mild phenotype-associated mutations generally localized to regions of eIF2B predicted
to minimally impact its function, this was not true for all cases (Slynko et al., 2021). Finally, phenotypic variability has
been observed among family members carrying the same VWM-associated EIF2B variant (Bugiani et al., 2018). Consis-
tent with the neurological symptoms associated with VWM, astrocytes and oligodendrocytes are the dominant cell type
targeted by the disease (Bugiani et al., 2011, 2013; Dietrich et al., 2005; Dooves et al., 2016). Yet, females affected by
VWM frequently experience ovarian failure. Additionally, mutations in EIF2B1 have been linked to permanent neona-
tal diabetes and diabetic ketoacidosis (Alamri et al., 2016; De Franco et al., 2020). Insulin translation is highly regulated
to allow rapid upregulation of insulin protein production in response to glucose (Vasiljevi�c et al., 2020), suggesting the
possibility that reduced eIF2B function contributes to diabetes by altering the dynamic biosynthesis of insulin. Thus, an
important avenue of future research should investigate the molecular mechanisms by which mutations in essential
translation factors such as the EIF2B genes confer tissue-specific defects. Going forward, it will be informative to inves-
tigate the ISR in the context of additional EIF2B mutations. It may reveal a possible relationship between the degree to
which the ISR is impacted and the phenotypic severity of a VWM-associated EIF2B mutation.

6.3 | Genetic diseases of PPP1R15B (CReP)

Mutations in PPP1R15B, the gene that encodes CReP, lead to microcephaly, short stature, and impaired glucose metab-
olism 2 (MSSGM2, OMIM #616817; Table 4). In 2015, two separate groups identified a homozygous missense variant in
PPP1R15B (c.1972G>A p.Arg658Cys) that affects the arginine at position 658 of CReP (Abdulkarim et al., 2015;
Kernohan et al., 2015) which is well conserved and resides in the C-terminal region of the protein where it interacts
with the phosphatase PP1 (Jousse et al., 2003). Individuals with the arginine to cysteine substitution exhibited micro-
cephaly, short stature, and intellectual disability (Abdulkarim et al., 2015; Kernohan et al., 2015). Some patients were
also diagnosed with early-onset diabetes (Abdulkarim et al., 2015) or presented decreased brainstem and cord volume
and delayed myelination (Kernohan et al., 2015). The missense mutation caused reduced association of CReP with PP1
and impaired dephosphorylation of p-eIF2α (Abdulkarim et al., 2015; Kernohan et al., 2015). Rat beta cells with
PPP1R15B knockdown displayed decreased total insulin levels and elevated baseline insulin secretion, suggesting that
glucose metabolism is dysregulated in the absence of PPP1R15B (Abdulkarim et al., 2015). In addition to the missense
variant, heterozygous compound mutations in PPP1R15B (c.63G>A p.Trp21* and c.674delC p.Pro225LeufsX10) were
described in two female siblings and are predicted to generate extremely truncated CReP proteins that lack the
PP1-interacting domain. The patients harboring the variants primarily suffered from infantile cirrhosis and, like those
expressing the missense variants, also displayed microcephaly, short stature, and intellectual disability. Patient-derived
liver cells exhibited increased eIF2α and p-eIF2α protein levels (Mohammad et al., 2016). Thus, elevated p-eIF2α sug-
gests one consequence of PPP1R15B alleles associated with these syndromes is either hyper-activation of the ISR and/or
chronic activation of the ISR without resolution (Figure 6a,b).

TABLE 4 Disease-associated alleles of PPP1R15B

Gene Alleles Disease/syndrome References

PPP1R15B c.1972G>A (p.Arg658Cys) Microcephaly, short stature, and intellectual
disability

(Abdulkarim et al., 2015;
Kernohan et al., 2015)

PPP1R15B c.63G>A (p.Trp21Ter); c.674delC
(p.Pro225LeufsX10)

Infantile cirrhosis, growth impairment, and
neurodevelopmental anomalies

(Mohammad et al., 2016)
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Further studies are required to understand the consequences of the reported PPP1R15B mutations on the ISR and
the diverse phenotypes associated with these syndromes. It is interesting that the same amino acid substitution in two
sets of siblings is associated with diabetes in one set of siblings, but not the other. While this could be due to differences
in genetic backgrounds or environments between the families, it will be important to examine the cell-type-specific
impacts of PPP1R15B alleles to understand how defects in CReP perturb human health and development.

6.4 | Genetic diseases of EIF2AK1 (HRI)

A heterozygous de novo missense variant in EIF2AK1, the gene that encodes HRI, is associated with Leu-
koencephalopathy, Motor Delay, Spasticity, and Dysarthria (LEMSPAD) syndrome (OMIM #618878; Table 5). The vari-
ant (c.1342A>G p.Ile448Val) was identified by trio exome sequencing and is located in the second kinase domain of
HRI. The patient, a 6-year-old female, presented numerous symptoms including motor developmental delay, white mat-
ter abnormalities, speech disorder, and attention deficit hyperactivity disorder. 293T cells expressing the missense vari-
ant displayed reduced baseline levels of p-eIF2α indicating that the mutation is loss of function and compromises the
kinase activity of HRI (Mao et al., 2020; Figure 6a,c).

Beyond reduced eIF2α phosphorylation in unstressed conditions, it is unclear how the c.1342A>G p.Ile448Val
mutation impacts the ISR. Because the mutation appears to diminish the function of HRI, it is expected that the ISR
will fail to be activated in the presence of HRI-responsive stressors such as mitochondrial stress (Guo et al., 2020). It is
also likely that mutant cells will be more sensitive to activators of HRI and may exhibit increased cell death. As with
other genetic diseases of the translation and ISR machinery, it will be critical to examine the impact of this missense
variant on the cell types primarily affected by LEMSPAD syndrome, including central nervous system cells. Additional
cases of LEMSPAD syndrome will need to be reported to fully understand the spectrum of symptoms and systems
targeted by EIF2AK1 mutations.

6.5 | Genetic diseases of EIF2AK2 (PKR)

Heterozygous de novo missense variants in EIF2AK2, the gene that encodes PKR, are associated with the neu-
rodevelopmental disorder Leukoencephalopathy, Developmental Delay, and Episodic Neurologic Regression
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FIGURE 6 Diagram representing the predicted impacts of disease-associated alleles of the CReP gene PPP1R15B and the eIF2ɑ kinase

genes on the ISR. (a) Wild-type cells undergo a normal ISR upon stress that is resolved with GADD34 induction. (b) Cells harboring

mutations in PPP1R15B encoding CReP are predicted to reduce p-eIF2ɑ dephosphorylation in unstressed cells. (c) Loss of eIF2ɑ kinase

activity due to disease-associated alleles of the genes encoding HRI (EIF2AK1), PKR (EIF2AK2), PERK (EIF2AK3), or GCN2 (EIF2AK4) are

predicted to reduce eIF2ɑ phosphorylation upon stress
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(LEUDEN) syndrome (OMIM #618877; Calame et al., 2021; Mao et al., 2020; Table 5). The primary symptoms of LEU-
DEN syndrome include developmental delay, white matter alterations, hypomyelination, seizures, and neurologic
regression following febrile illness (Calame et al., 2021; Mao et al., 2020). LEUDEN syndrome is rare—there are only
10 reported cases to date corresponding to eight different missense variants that largely localize to the double-stranded
RNA binding motifs and kinase domain of PKR (Mao et al., 2020). Three additional homozygous, heterozygous, or het-
erozygous de novo EIF2AK2 missense mutations are also linked to early-onset generalized dystonia (Kuipers
et al., 2021), a neurological disorder characterized by abnormal movements due to involuntary muscle contractions
(Balint et al., 2018). In addition to dystonia, a subset of patients displayed neurological symptoms reminiscent of LEU-
DEN syndrome such as developmental delay, seizures, and dystonia onset or neurologic regression with febrile illness
(Kuipers et al., 2021).

The molecular mechanisms behind a subset of the EIF2AK2 variants linked to LEUDEN syndrome and early-onset
generalized dystonia were examined. LEUDEN syndrome patient-derived fibroblasts, specifically those bearing the
c.31A>C p.Met11Leu, c.398A>T p.Tyr133Phe, or c.1382C>G p.Ser461Cys mutation, presented decreased baseline pro-
tein levels of p-eIF2α and ATF4. In response to long-term poly(I:C) treatment, the c.31A>C p.Met11Leu and c.398A>T
p.Tyr133Phe mutants failed to exhibit the expected increase in eIF2α phosphorylation (Mao et al., 2020). These results
indicate that the mutations associated with LEUDEN syndrome are loss of function. In intriguing contrast with LEU-
DEN syndrome, the early-onset generalized dystonia variants appear to be gain of function. Patient-derived fibroblasts
expressing the c.95A>C p.Asn32Thr or c.388G>A p.Gly130Arg variant displayed increased PKR and eIF2α phosphory-
lation upon extended poly(I:C) treatment compared to wild-type controls (Kuipers et al., 2021). It is interesting to note
that p.Met11Leu (LEUDEN syndrome) and p.Asn32Thr (dystonia) both localize to the first double-stranded RNA bind-
ing motif of PKR, yet show opposite phenotypes, and p.Tyr133Phe (LEUDEN syndrome) and p.Gly130Arg (dystonia)
both localize to the second double-stranded RNA binding motif of PKR, yet show opposite phenotypes.

As a recently described disease with a limited number of reported cases, there are several questions to address
regarding LEUDEN syndrome. It will be important to determine how all of the identified EIF2AK2 variants impact the
function of PKR as this will provide the necessary information to determine effective treatment strategies (Figure 6a,c);
it could be detrimental to treat a loss-of-function EIF2AK2 mutation as a gain-of-function mutation, and vice versa. It
will also be important to determine how disease-associated EIF2AK2 variants affect cells of the central nervous system.
While the ISR is activated in all cell types, cells of the central nervous system appear to be specifically affected in LEU-
DEN syndrome and dystonia.

6.6 | Genetic diseases of EIF2AK3 (PERK)

Wolcott–Rallison syndrome (WRS; OMIM #226980) is a rare autosomal recessive disease that is characterized by neona-
tal diabetes, multiple epiphyseal dysplasia, and liver disease (Julier & Nicolino, 2010; Wolcott & Rallison, 1972).
Patients with WRS may also present with renal dysfunction, intellectual disability, neutropenia, or hypothyroidism.
WRS often leads to death at a young age (Julier & Nicolino, 2010). 28 years after its first description, homozygous muta-
tions in EIF2AK3, the gene that encodes PERK, were identified as the cause of WRS (Delépine et al., 2000). Since then,
numerous EIF2AK3 mutations have been reported to be associated with WRS (Table 5). The reported mutations span
the entire gene, and several are nonsense or frameshift mutations that produce premature stop codons and truncated
protein products (Julier & Nicolino, 2010). As the kinase domain of PERK is located in the C-terminal region of the pro-
tein, it is often disrupted and is expected to result in loss of function (Figure 6a,c). In support of this, yeast expressing
EIF2AK3 missense variants localized to the kinase domain of PERK exhibit reduced or abolished eIF2 phosphorylation
(Senée et al., 2004). Additionally, Perk�/� mice recapitulate the characteristic symptoms of WRS including diabetes,
skeletal dysplasia, and growth retardation (H. P. Harding et al., 2001; Iida et al., 2007; Y. Li et al., 2003; J. Wei
et al., 2008; P. Zhang, McGrath, Li, et al., 2002; W. Zhang et al., 2006). Thus, PERK is particularly important for proper
pancreatic function and development.

EIF2AK3 variants are also associated with tauopathies, neurodegenerative diseases characterized by tau protein
aggregates. Tau associates with microtubules to promote their stability and assembly and is expressed in neuronal axons
(Binder et al., 1985). Genome-wide association studies revealed that the EIF2AK3 single-nucleotide polymorphism
rs7571971 is associated with the tauopathies progressive supranuclear palsy and APOE ε4-positive Alzheimer's disease
(Höglinger et al., 2011; Q.-Y. Liu et al., 2013). Further, a patient diagnosed with WRS expressing homozygous EIF2AK3
R902stop alleles exhibited hallmarks of neurodegeneration including FUS-positive inclusion bodies and tau-containing
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neurofibrillary tangles in the frontal cortex, and ubiquitin-positive foci in cells of the cerebellum (Bruch et al., 2015).
Tauopathy-associated EIF2AK3 alleles lead to dysfunctional ISR activity as neurons derived from patients with progres-
sive supranuclear palsy display reduced p-eIF2α and CHOP mRNA levels, and elevated cell death in response to ER
stress (Yuan et al., 2018). Thus, PERK alleles are also associated with neurodegenerative tauopathies.

6.7 | Genetic diseases of EIF2AK4 (GCN2)

Mutations in EIF2AK4, the gene that encodes GCN2, are associated with different forms of pulmonary hypertension
including pulmonary veno-occlusive disease, pulmonary capillary hemangiomatosis, and pulmonary arterial hyperten-
sion (Abou Hassan et al., 2019; Best et al., 2014, 2017; Eichstaedt et al., 2016; Eyries et al., 2014; Hadinnapola
et al., 2017; Table 5). The primary symptoms of pulmonary hypertension are progressive exercise dyspnea, dyspnea on
bending down, exercise-induced syncope, fatigue, and edema (Hoeper et al., 2017). GCN2 acts through the ISR and
ATF4 to promote angiogenesis in response to amino acid restriction (Longchamp et al., 2018). EIF2AK4 mutations were
first linked to pulmonary veno-occlusive disease. In a study of 13 families and 20 patients affected by pulmonary veno-
occlusive disease, 22 separate mutations in EIF2AK4 were identified, largely premature stop codons or indels. The reces-
sive, loss-of-function mutations localized to all regions of the GCN2 protein and were either homozygous or heterozy-
gous compound mutations (Eyries et al., 2014). Next, a genomic analysis of two brothers affected by pulmonary
capillary hemangiomatosis and two unrelated individuals with sporadic pulmonary capillary hemangiomatosis uncov-
ered multiple loss-of-function EIF2AK4 mutations. The homozygous or heterozygous compound mutations identified
were autosomal recessive (Best et al., 2014). More recently, mutations in EIF2AK4 have been linked to pulmonary arte-
rial hypertension, albeit less commonly (Abou Hassan et al., 2019; Best et al., 2017; Eichstaedt et al., 2016; Hadinnapola
et al., 2017). Pulmonary hypertension-associated EIF2AK4 mutations are thought to be loss of function and likely pre-
vent sufficient ISR activation (Figure 6a,c). Thus, treatments aimed at stimulating the ISR may be promising for individ-
uals suffering from various forms of pulmonary hypertension.

6.8 | Potential therapies for diseases of the integrated stress response

Mutations in genes that encode key translation or ISR factors lead to an array of afflictions. With the exception of dis-
eases caused by mutations in EIF2AK4, several manifest as neurodevelopmental disorders with endocrine system
defects. Collectively, many systems are affected including the reproductive, skeletal, and circulatory systems, in addition
to the nervous and endocrine systems. Because of the severity and pleiotropy of the phenotypes associated with such
diseases, it is critical to identify effective therapies. One potential treatment is the small molecule called ISRIB (inte-
grated stress response inhibitor), an ISR inhibitor that binds to and activates the eIF2 GEF eIF2B by promoting its
assembly (Sekine et al., 2015; Sidrauski et al., 2013, 2015; Tsai et al., 2018; Zyryanova et al., 2018). ISRIB has been
shown to rescue cognitive deficits in the Ts65Dn mouse model of Down syndrome which displays elevated p-eIF2ɑ
levels in the brain due to PKR activation (P. J. Zhu et al., 2019). In the context of MEHMO syndrome, ISRIB treatment
improved many of the deficiencies exhibited by patient-derived iPSCs expressing an EIF2S3 frameshift mutation. Con-
sistent with ISR inhibition, ISRIB increased global translation and decreased the expression of ATF4, CHOP, and
GADD34 in frameshift mutants. ISRIB also rescued ternary complex levels and enhanced the differentiation of
MEHMO patient-derived iPSCs into neurons (Young-Baird et al., 2020).

Although creating therapies to combat VWM will be particularly challenging due to the abundance of causative
mutations and the vast spectrum of symptom severity, ISRIB and a similar eIF2B activator have shown tremendous
promise. ISRIB has been demonstrated to recover mutant eIF2B complex stability and GEF activity (Wong et al., 2018),
normalize translation suppression and the expression of ISR targets (Abbink et al., 2019; Moon & Parker, 2018a), and
enhance VWM mouse motor skills (Abbink et al., 2019). Similar results have also been obtained with 2BAct, a recently
described eIF2B activator, also in a mouse model of VWM (Wong et al., 2019). Alternatively, inhibitors of specific eIF2ɑ
kinases may hold therapeutic promise for genetic diseases of the ISR. For example, PERK inhibitor I also rescues trans-
lation suppression defects in VWM patient cell lines upon ER stress (Axten et al., 2012; Moon & Parker, 2018a). How-
ever, these compounds can exhibit toxicity precluding their therapeutic use (Halliday et al., 2015). ISRIB may also
prove to be an effective treatment for the diseases caused by mutations in the CReP-encoding gene PPP1R15B as it is
predicted that p-eIF2α levels would be elevated, leading to chronic ISR activity.
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Diseases caused by mutations in the genes that encode the ISR kinases are generally predicted to be loss of function.
For instance, the EIF2AK1 (HRI) mutation associated with LEMSPAD syndrome and EIF2AK2 (PKR) mutations associ-
ated with LEUDEN syndrome causes decreased p-eIF2α levels, likely impairing ISR activity. Thus, LEMSPAD and
LEUDEN syndrome patients may benefit from treatments that increase ISR activity like guanabenz (Pakos-Zebrucka
et al., 2016; Tsaytler et al., 2011) or its derivative Sephin1 (Das et al., 2015; Pakos-Zebrucka et al., 2016), GADD34 inhib-
itors that were demonstrated to extend eIF2α phosphorylation and ATF4 expression as well as delay translation recov-
ery upon stress in HeLa cells (Das et al., 2015; Tsaytler et al., 2011). Alternatively, the CReP inhibitor nelfinavir,
originally a treatment for HIV, effectively induced the ISR in HeLa cells as determined by increased p-eIF2α and ATF4
levels in the absence of stress (De Gassart et al., 2016; Pakos-Zebrucka et al., 2016). The p-eIF2α dephosphorylation
inhibitor salubrinal similarly activates the ISR—rat pheochromocytoma cells exhibited eIF2α phosphorylation and
expression of GADD34 and CHOP upon treatment with salubrinal (Boyce et al., 2005; Pakos-Zebrucka et al., 2016).
Similarly, loss-of-function mutations in EIF2AK3 (PERK) and EIF2AK4 (GCN2) associated with WRS and pulmonary
hypertension, respectively, are also predicted to diminish ISR activity. Chemicals such as Sephin1, guanabenz,
nelfinavir, or salubrinal may represent viable therapies. In contrast, EIF2AK2 mutations associated with early-onset
generalized dystonia are gain of function and likely hyperactivate the ISR. Thus, it is imperative to choose a treatment
that will decrease ISR activity, such as the PKR inhibitor C16 which blocks PKR autophosphorylation (Jammi
et al., 2003; Pakos-Zebrucka et al., 2016) and reduced p-eIF2α levels in mouse macrophages (Fritzlar et al., 2019).

7 | CONCLUSION

The continuous discovery of genetic disorders associated with mutant alleles of ISR factors suggests an important role
in the dynamic regulation of translation in human health and development. We highlight three research areas of partic-
ular importance for future work. First, the role of the ISR in promoting the development, regeneration, and function of
the nervous system must be elucidated. Human genetic diseases including VWM, LEUDEN syndrome, and WRS are
associated with neuropsychological, neurodegenerative, and neurodevelopmental phenotypes, emphasizing the impor-
tance of precise regulation of the ISR in neuronal biology and health, as does recent works suggesting that targeting the
ISR with small molecules such as ISRIB rescues deficits in cognitive function, myelination, and prion-mediated neu-
rodegeneration (reviewed in Kapur et al., 2017; Moon et al., 2018). Evaluating the precise mechanisms by which ISR
factors regulate neuronal health and genetic disease holds promise for uncovering novel therapeutic strategies for a
wide range of neurodevelopmental and neurodegenerative conditions.

Second, in addition to its important role in human development, the impact of ISR dysregulation in aging must be
determined. Altered RNP granule dynamics may contribute to aging, as stress granule- and P-body-like aggregates accu-
mulate with age in C. elegans (Lechler et al., 2017; Rieckher et al., 2018). Cognitive defects associated with aging can be
ameliorated by targeting the ISR with ISRIB in a mouse model (Krukowski et al., 2020). Additionally, suppressing the
ISR can extend lifespan and improve memory and learning in model organisms. Furthermore, alleles of the EIF2AK3,
EIF2AK4, EIF2S2, and EIF2B2 homologs increased longevity in C. elegans, implicating the ISR in lifespan (Derisbourg
et al., 2021). Thus, an important outstanding research area is determining the molecular mechanisms the ISR contrib-
utes to organismic longevity.

A third important area of research will be to determine how defects in essential ISR genes cause cell- and tissue-type
specific effects. The majority of the genes that encode components of the ISR are essential, suggesting that these factors
are vital for all cell types. Yet, the diverse array of phenotypes ranging from pulmonary arterial hypertension to progres-
sive white matter loss associated with mutations in eIF2ɑ kinases implies there may be (1) cell-type-specific genes that
are induced by the ISR, (2) differential stoichiometry of ISR factors among cell types, or (3) certain cell types that rely
on the precise regulation of translation in unstressed or stressed conditions due to their morphological or functional
roles. A large body of work has uncovered the major players in the ISR pathway that mediate rapid changes in mRNA
regulation at the transcriptional and translational levels to facilitate cell survival during stress. Uncovering the molecu-
lar mechanisms by which the ISR is activated and dysregulated in specific tissues will unlock future therapeutic strate-
gies for a wide range of human diseases.

Dysregulation of the ISR is implicated in many other disease states including neurodegeneration and cancer and
intersects with innate immune pathways. The ISR is constitutively activated in several neurodegenerative disorders
including Alzheimer's, Parkinson's, and Huntington's disease and ALS (reviewed in Costa-Mattioli & Walter, 2020;
Moon et al., 2018; Pakos-Zebrucka et al., 2016), and inhibition of the ISR by genetic or chemical means such as
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PPP1R15A (GADD34) overexpression or the PERK inhibitor GSK2606414 have been demonstrated to counteract neu-
rodegeneration in fly and mouse models (Celardo et al., 2016; Moreno et al., 2012; Radford et al., 2015). Abnormal ISR
activity has also been linked to cancer (Costa-Mattioli & Walter, 2020). For example, both oncogene-induced PERK acti-
vation and loss of PKR function promote tumorigenesis (Barber et al., 1995; Bobrovnikova-Marjon et al., 2010; Donzé
et al., 1995; Hart et al., 2012; Koromilas et al., 1992; E. F. Meurs et al., 1993; Nagy et al., 2013). Finally, the ISR plays an
important role in immunity (Costa-Mattioli & Walter, 2020). PKR activates the ISR to shut down global translation
upon viral infection to prevent viral protein translation (Eiermann et al., 2020), and ISR induction is required for the
activation of nuclear factor kappa B (NF-kB), a family of transcription factors that drive the expression of pro-
inflammatory genes (Deng et al., 2004). Furthermore, HRI is required to produce pro-inflammatory cytokines upon bac-
terial infection via phosphorylation of eIF2α and activation of the ISR (Abdel-Nour et al., 2019). Therefore, understand-
ing the mechanisms and outcomes of ISR activation holds promise for developing new therapeutic intervention
strategies for a wide spectrum of human diseases.
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