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Maintenance of proteostasis is of utmost importance to cellular viability and relies on the
coordination of many post-transcriptional processes to respond to stressful stimuli.
Stress granules (SGs) are RNA–protein condensates that form after translation initiation is
inhibited, such as during the integrated stress response (ISR), and may facilitate cellular
adaptation to stress. The ribosome-associated quality control (RQC) pathway is a critical
translation monitoring system that recognizes aberrant mRNAs encoding potentially toxic
nascent peptides to target them for degradation. Both SG regulation and the RQC
pathway are directly associated with translation regulation, thus it is of no surprise recent
developments have demonstrated a connection between them. VCP’s function in the
stress activated RQC pathway, ribosome collisions activating the ISR, and the regulation
of the 40S ribosomal subunit by canonical SG proteins during the RQC all connect SGs
to the RQC pathway. Because mutations in genes that are involved in both SG and RQC
regulation are associated with degenerative and neurological diseases, understanding the
coordination and interregulation of SGs and RQC may shed light on disease mechan-
isms. This minireview will highlight recent advances in understanding how SGs and the
RQC pathway interact in health and disease contexts.

Introduction
Stress granules (SGs) are membraneless RNA–protein condensates that form in response to many
environmental or cell-intrinsic challenges after translation initiation is arrested. The integrated stress
response (ISR) is activated during a variety of stress conditions such as ER stress, viral infection, heat,
cold, or toxic metalloids. During the ISR, any of four eIF2α (eukaryotic initiation factor 2α) kinases
are activated and trigger eIF2α phosphorylation to inhibit ternary complex production. This in turn
suppresses translation initiation, resulting in polysome disassembly and the release of mRNAs that are
sequestered to SGs by specific RNA binding proteins (RBPs) [1,2]. This process results in SGs com-
posed of non-translating mRNAs, non-coding mRNAs, translation initiation factors, 40S ribosomal
subunits, RBPs including G3BP1 (Ras GTPase-activating protein-binding protein 1), TIA1 (TIA1
cytotoxic granule associated RNA binding protein) and UBAP2L (ubiquitin associated protein 2 like),
and other proteins with intrinsically disordered regions [3–5]. SGs are disassembled or cleared rapidly
once the stress is removed through context-dependent mechanisms such as autophagy [6] or
ubiquitin-dependent G3BP1 degradation [7]. Although the exact biological function of SGs is a ques-
tion of active investigation in the field, advances in uncovering the determinants of their dynamics
and composition has given insight into the role of SGs in translation regulation and suggested possible
roles in the pathology of several diseases [8].
The ribosome-associated quality control (RQC) pathway facilitates the degradation of nascent pep-

tides that result from translation of aberrant mRNAs, and is a critical mechanism to monitor transla-
tion elongation. mRNA features that induce the RQC pathway include premature termination codons
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[9], internal poly(A) tracts [10], absence of stop codons [11,12], and long 30 untranslated regions [13].
Translation of these aberrant mRNAs can lead to toxic protein aggregates, nonfunctional, and/or dominant-
negative proteins that are detrimental to cell viability. Thus mRNAs containing these features are subject to
mRNA surveillance machinery including the nonsense-mediated decay, no-go decay, and non-stop decay path-
ways. Furthermore, during translation elongation, these defective mRNAs cause ribosomes to stall and collide,
triggering 40S and 60S ribosomal subunits to split and subsequently activate the RQC pathway [14]. The
nascent peptides are then tagged for degradation in a ubiquitin-mediated manner and the ribosomal subunits
can be recycled for another round of translation. Mutations in the genes that encode RQC factors are impli-
cated in degenerative diseases of the muscular, skeletal, and nervous systems [15–17] emphasizing the import-
ance of the RQC in human health.
Recent work revealed three major connections between the regulation of SGs and the RQC pathway. First,

the proteasome-associated valosin-containing protein (VCP), which aids in the degradation of the nascent
peptide chain during translation quality control [18], has also been implicated in regulating SG assembly
[19,20] and disassembly [6,7,21]. Second, ribosome stalling and collisions trigger eIF2α phosphorylation subse-
quently activating the ISR, the key upstream signaling pathway for SG formation [22–24]. Third, G3BP1, a key
player in SG assembly and composition, associates with the 40S ribosomal subunit and aids 40S subunit recyc-
ling after RQC activation [25]. Given the detrimental disease phenotypes (e.g. degenerative diseases, cancers,
and vascular system diseases) of mutations in RQC and SG genes (e.g. VCP, G3BP1, and GCN2), understanding
how these processes are related and the functions of their overlapping protein players will be critical for novel
therapeutic approaches. These observations together raise the question of whether ribosome stalling, or
‘bRaQCing’, can trigger and/or perturb the stress response. This minireview will highlight some of the key find-
ings connecting the RQC pathway to SG regulation.

VCP links translation regulation to stress granule dynamics
and composition
VCP/p97 is an evolutionarily conserved AAA+ ATPase critical for cellular homeostasis and survival [26]. In
addition to its role in the RQC pathway, VCP is a central proteostasis factor that regulates the dynamics of SG
assembly and disassembly. Multiple lines of evidence show VCP is crucial for SG clearance and formation in
specific stress contexts including heat and arsenite stresses [6,19,21,27,28]. Recent work has connected VCP’s
role in SG regulation and RQC in a similar yet distinct stress-activated RQC (saRQC) pathway [20]. The fol-
lowing paragraphs will summarize the evidence supporting VCP’s role in both pathways as well as introduce its
role as an RQC factor regulating SG composition.
Several studies support the model that VCP (Cdc48 in yeast) promotes the degradation of the ubiquitinated

nascent peptide in the RQC pathway. First, electron microscopy and biochemical assays identified Cdc48 to be
in complex with RQC factors including Ltn1, Rqc1, Rqc2, and the 60s ribosomal subunit [18]. Genetic deple-
tion of these factors in cells expressing non-stop mRNA reporters resulted in aberrant nascent peptides
co-sedimenting with the ribosome [29]. Polysome profiling revealed a build up of proteins generated from a
nonstop reporter on both 60S and 80S fractions in yeast with non-functional Cdc48 [30]. Other studies identi-
fied an accumulation of aggregated proteins encoded by non-stop reporter mRNAs in VCP-depleted cells using
western blot analysis, further supporting the model that VCP facilitates the degradation of these nascent chains.
Proteasome inhibition with the small molecule MG132 in cells expressing RQC-targeted mRNA reporters mir-
rored this phenotype, suggesting that VCP aids nascent protein degradation via the proteasome [31]. Given
that other studies identified the ubiquitin ligase Ltn1 is responsible for the addition of ubiquitin to nascent pep-
tides during RQC, a proposed model for VCP is the recognition and elimination of these peptides by unfolding
and/or releasing nascent proteins to facilitate proteasome-mediated degradation (Figure 1).
Interestingly, VCP is implicated in SG assembly beyond its role in the RQC pathway. siRNA-mediated VCP

depletion results in impaired SG assembly or accretion, as fewer large SGs and more small SGs form upon
arsenite stress in this condition [19]. Established VCP cofactors UFD1 and PLAA that are implicated in defect-
ive ribosomal product (DRiP) clearance [30] and ribosome degradation in yeast [36], respectively, are also
required for proper SG assembly upon arsenite stress. siRNA-mediated depletion of UFD1 or PLAA resulted in
similar SG phenotypes as VCP depletion [19]. These results suggest that VCP promotes SG assembly and may
play a role in determining SG protein composition by modulating the proteome.
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Three pieces of evidence suggest VCP is critical for SG clearance (Figure 1). First, VCP colocalizes with heat
or arsenite SGs in HeLa cells [6,21] and co-purifies with stable SG sub-structures upon arsenite stress in U-2
OS cells [37]. Interestingly, VCP does not co-localize with arsenite SGs at early time points [20] or at lower
arsenite concentrations [38], when SGs are smaller and more dynamic in U-2 OS cells [39]. In-line with this
interpretation, VCP accumulates over time in optogenetically induced SG-like G3BP1 granules in U-2 OS cells,
which become less dynamic over time [40]. These observations suggest that VCP is likely recruited to stable,
less dynamic SGs, perhaps directly aiding in their disassembly by remodeling ribonucleoproteins.

Figure 1. Proposed mechanisms by which stress granules and the RQC pathway intersect.

(A) Overview of the RQC and saRQC pathways. In the RQC, translation of aberrant mRNAs induces ribosome stalling and

collisions that are recognized by ZNF598, triggering ribosome splitting [32]. NEMF then recognizes the 60S ribosomal subunit

and catalyzes the addition of carboxy-terminal alanine threonine (‘CAT tails’) onto the nascent peptide [33]. NEMF also

stabilizes LTN1 which adds ubiquitin to the nascent chain [14]. The ubiquitinated nascent chain is extracted from the 60S

ribosome by VCP and unfolded for proteasome- mediated degradation [29]. In the saRQC, VCP, NEMF, and LTN1 may aid in

the partitioning of specific RNAs to SGs following arsenite or heat stress [20]. (B) Ribosome stalling and collisions activate the

ISR through GCN2. GCN2 dimerizes, autophosphorylates, and phosphorylates eIF2α to trigger the ISR and potentially cause

SG formation in a mechanism that may depend on GCN1 and GCN20. (C) Storage and recycling of the 40S ribosomal subunit

is mediated by G3BP1. Upon ribosome collisions, ZNF598 ubiquitinates the 40S ribosomal subunit [34] which can in turn be

recognized and removed by G3BP1-family-USP10 to recycle the 40S subunit for another round of translation [25]. In stress

conditions such as arsenite, clotrimazole (CZ), and pateamine A (Pat A), 40S subunit proteins co-localize with SGs [35]. When

G3BP1 associates with the cytoplasmic activated/proliferation-associated protein 1 (Caprin1), SG formation is promoted. In

contrast, when G3BP1 associates with USP10, SG formation is inhibited [35]. (D) Roles of RQC factors in SG assembly and

disassembly. In response to environmental and cell intrinsic stressors, eIF2α can be phosphorylated thus limiting ternary

complex production to suppress translation initiation [2]. This in turn leads to the formation of SGs that are composed of

various RBPs, 40S subunit proteins, and RNAs. SGs can be cleared by autophagy [19] or ubiquitination and degradation of the

SG protein G3BP1 in stress-specific contexts [7].
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Second, VCP depletion or inhibition delays SG clearance during the recovery from stress [6,7,41]. A fluores-
cence microscopy-based gene deletion screen in yeast, in addition to chemical inhibition and siRNA knock-
down of VCP experiments in human cells, suggested VCP plays a critical role in heat-induced SG clearance
[6]. Live and fixed cell fluorescence microscopy studies have demonstrated delayed SG clearance upon VCP
knockdown or VCP inhibition following heat [7] or arsenite stress [6,41]. The proteasome inhibitor bortezomib
also caused delayed arsenite and heat SG clearance [41]. These observations together support VCP and the pro-
teasome playing a key role in SG clearance following stress.
Third, disease-associated VCP mutants including A232E and R155H variants may impair SG dynamics in

specific contexts. Transient expression of VCP-A232E or VCP-R155H was associated with constitutive SGs in
HeLa cells [6], but not in murine skeletal muscle C2C12 cells [27]. Interestingly, over-expression of
VCP-A232E or VCP-R155H is associated with increased localization of a representative saRQC target mRNA,
AHNAK, within SGs in U-2 OS cells, suggesting the RNA composition of SGs may be altered in disease con-
texts [20]. Transient expression of pathogenic VCP mutants was also associated with persistent SGs after
removal of arsenite stress in HeLa cells [21] and C2C12 cells [27]. However, while SG clearance was signifi-
cantly delayed following heat stress in U-2 OS or HeLa cells expressing VCP-R155H or VCP-A232E [7,28],
C2C12 cells expressing these mutants displayed no such phenotype [27]. Therefore, VCP dysfunction impairs
SG clearance, seemingly in a stress and/or cell type specific manner.
Intriguingly, VCP, LTN1, and NEMF may also regulate the mRNA composition of SGs in a unique saRQC

pathway. Live and fixed cell fluorescence microscopy experiments revealed a novel role for VCP, LTN1, and
NEMF in regulating the partitioning of certain mRNAs to SGs [20]. Chemical inhibition of VCP resulted in
the accumulation of reporter mRNAs associated with nascent protein chains during arsenite stress.
Furthermore, VCP inhibition caused a decrease in the localization of specific mRNAs to SGs that could be
rescued by co-treatment with puromycin, which ejects mRNAs and nascent proteins from ribosomes [20].
Inhibition of the proteasome or knockdown of LTN1 or NEMF phenocopied VCP inhibition [20]. These obser-
vations suggest that VCP and other canonical RQC factors play a role in releasing mRNAs from translation
complexes to facilitate their localization to stress granules. Because a poly-lysine tract-containing RQC target
transcript did not depend on VCP for partitioning into SGs, and intact translation complexes accumulated
upon VCP or proteasome inhibition during arsenite stress, VCP may be part of a unique saRQC pathway that
targets different mRNAs than the canonical RQC pathway. Taken together, these observations underscore a
critical role for VCP and other RQC factors in the regulation of SG assembly, composition, and disassembly
that must be further explored.

Ribosome stalling and collisions trigger the ISR
GCN2 (general control nonderepressible 2) is a serine/threonine kinase that phosphorylates eIF2α upon amino
acid starvation and other stresses to activate the ISR. Through microarray analysis coupled with gel shift and
northern blot assays, GCN2 was shown to be activated by binding uncharged tRNAs [42–45]. The ribosomal
P-stalk was also shown to activate GCN2 both in vitro and in vivo [46,47], exemplifying a second distinct
mechanism of GCN2 activation independent of uncharged tRNAs. Exciting recent advances that we detail
below now point to a role for GCN2 in detecting ribosome collisions, which can result from strong ribosome
stall sites. The results of these studies together suggest a mechanism by which the ribosome can activate GCN2
and subsequently induce the ISR to inhibit translation initiation, a key signaling pathway that drives SG forma-
tion. This section will highlight the recent evidence that the canonical RQC triggers of ribosome stalling and
collisions activate the ISR through GCN2.
Various lines of evidence support the notion that ribosome stalling and collisions activate GCN2 and subse-

quently activate the ISR (Figure 1). First, analysis of a mouse model lacking the nervous system-specific
tRNAArg

UCU and the ribosome rescue factor Gtpbp2 (GTP-binding protein 2) by Ishimura and colleagues identi-
fied ribosome stalling at arginine codons as well as ISR hallmarks including P-eIF2α and increased levels of the
stress-induced gene ATF4 (activating transcription factor 4) [22]. ISR induction was shown to be triggered by
GCN2 activation, as Gcn2−/− mice did not display the increased P-eIF2α levels [22]. These data demonstrated
that ribosome stalling can trigger the ISR through GCN2.
Second, intermediate levels of ribosome collisions by low-intermediate concentrations of chemical inhibitors

of translation elongation activate GCN2 and subsequently the ISR. The elongation inhibitors including aniso-
mycin (ANS), emetine (EME), methyl methanesulfonate (MMS), and cisplatin were shown to activate GCN2 at
low-intermediate concentrations predicted to stall some, but not all, ribosomes and thus leads to collisions
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[23,24,48]. Polysome profiling revealed an increase in disomes at intermediate levels of ANS and EME, suggest-
ing the induction of ribosome collisions [23]. Interestingly, amino acid starvation also induced collisions [23].
Analysis of P-eIF2α levels under these conditions in GCN2 depleted or inhibited cells demonstrated that
GCN2 is responsible for eIF2α phosphorylation and ISR activation [23,49]. Polysome profiling demonstrated
that the GCN2 co-activator, GCN1, associated with disomes [23] and cryo-electron microscopy structures of
collided disomes revealed a specific interaction of GCN1 with the ribosomal P-stalk [50]. GCN20, another
GCN2 cofactor, was not found to be associated with disomes [23] and the GCN20 binding domain of GCN1
was poorly resolved in structural analysis [50]. These observations may suggest GCN20 transiently associates
with GCN1 and GCN2, as depletion of GCN20 was found to increase cell survival upon ANS treatment and
protein interactome studies revealed overlapping GCN20 protein interactomes with GCN1 and the ribosome
collision sensor ZAKα [23]. These data suggest that when ribosomes stall and collide, GCN2 is activated by
GCN1 and GCN20, potentially through a mechanism involving the ribosome P-stalk and its associated proteins
(Figure 1). Interestingly, western blot analysis detected activated forms of p38 and c-Jun N-terminal kinase
( JNK) at intermediate elongation inhibitor concentrations, suggesting that these collisions can also trigger cell-
cycle arrest and apoptosis in addition to elevated P-eIF2α levels [23]. These data together suggested the model
that while low levels of ribosome stalling and collisions can trigger the ISR to feedback and inhibit translation
initiation when elongation is perturbed, apoptosis could be triggered through JNK activation when severe ribo-
some stalls and collisions cannot be resolved.
Another proposed model of the intersection of the RQC and the ISR suggests that the RQC and ISR path-

ways act antagonistically. Specifically, low levels of ribosome stalling and collisions are proposed to activate the
RQC, while high ribosome stalling and collision frequency activates the ISR [24]. The data supporting this
model are as follows. In Hel2 (ZNF598) knockout yeast, ribosome collisions caused by intermediate concentra-
tions of MMS, which inhibits translation elongation by alkylative damage of mRNA [51], resulted in increased
P-eIF2α levels [24]. Interestingly, ubiquitinated ribosomal protein levels within the cell increased in both Gcn2
knockout yeast and yeast expressing a phosphorylation-deficient serine to alanine mutation at residue 52 in
Sui2 (the eIF2α homolog in yeast) upon MMS treatment [24,48]. This suggests a mechanism where GCN2 is
responsible for inhibiting translation initiation via the ISR to prevent translation of aberrant mRNAs and
increased RQC activation in these conditions is a result of continued translation as translation initiation cannot
be suppressed via the ISR [24].
Collectively, these studies of GCN2 activation by ribosome collisions suggest that at low levels of ribosome

stalling and collisions, the RQC is activated and thus allows bulk translation to resume. Intermediate or high
levels of ribosome stalling and collisions then activate the ISR potentially through GCN1/20 and GCN2, thus
inhibiting canonical translation initiation and promoting cell survival. Finally, high levels of ribosome collisions
correlating with high levels of mRNA damage in the cell may overwhelm the RQC and the ISR, in turn indu-
cing apoptosis [23]. Therefore, these studies demonstrate that the RQC pathway intersects with the ISR, a key
upstream pathway for stress granule formation. However, more work needs to be done to understand precisely
how the ISR and RQC pathways are coordinated across eukaryotes and determine whether ribosome collisions
can trigger SG formation.

G3BP1 regulates storage and recycling of the 40S
ribosomal subunit
G3BP1 is a key stress granule protein through its RNA-binding and phase-separating functionalities [52].
G3BP1 is a central node of the RNA–protein network in stress granules, and is essential for SG assembly in
numerous stress contexts [35]. Multiple lines of evidence have also implicated G3BP1 in recycling of the 40S
ribosome after RQC activation. When ribosome collisions occur, the E3 ubiquitin-protein ligase ZNF598
recruits UBE2D3 (ubiquitin conjugating enzyme E2 D3) [53] to monoubiquitinate two lysine residues on ribo-
somal protein S10 (RPS10) [34]. ZNF598 also ubiquitinates RPS3 [32,54] and RPS20 [54], yet mutagenesis
studies of these proteins with poly(A) reporter mRNAs suggest this regulation may not be directly related to
RQC [32,54]. As ubiquitination generally targets proteins for degradation, these events could be interpreted as
a destruction signal for a potentially defective 40S ribosome.
However, some findings suggest that these ubiquitination events are instead a regulatory mechanism for 40S

ribosome recycling involving G3BP1 and the deubiquitinase ubiquitin specific peptidase 10 (USP10). USP10
plays a role in a diverse array of cellular processes [55], but recently was identified to be in a
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G3BP1-family-USP10 complex on the 40S ribosomal subunit based on co-immunoprecipitation experiments
[25]. Examination of ubiquitination, stoichiometry, and degradation of 40S subunits in cells expressing RQC
substrate transcripts (e.g. those with internal poly(A) tracts) and carboxy-terminal alanine threonine (CAT) tail
activators (see Figure 1) suggested that G3BP1-family-USP10 complex deubiquitinates the 40S ribosomal
subunit to prevent it from lysosomal degradation [25]. Low doses of translation elongation inhibitors that result
in RQC activation showed similar results further supporting this model [25]. Interestingly, SGs are enriched
with 40S ribosomal subunits [56] and co-immunoprecipitation under various stress conditions revealed a
G3BP1-40S subunit interaction [35]. Further characterization of this process demonstrated that G3BP1 interacts
with Caprin and USP10 under stress conditions and these proteins act in an antagonistic manner to promote
and impair SG formation, respectively [35]. Taken together, these results suggest a balance between 40S
ubiquitination-mediated rescue and degradation that may depend on cellular context and rely on G3BP1, as
well as connecting these ribosomes to be localized to SGs (Figure 1). Thus, this connection between G3BP1
and the 40S subunit further extends the network of interactions between the RQC pathway and SGs.

Diseases associated with stress granules and the RQC
pathway
Genes involved in both the RQC pathway and SGs have been implicated in many diseases including vacuolar
tauopathy reminiscent of Alzheimer’s disease (AD), frontotemporal dementia (FTD), inclusion body myop-
athies, Paget’s disease of the bone, amyotrophic lateral sclerosis (ALS), various cancers, and pulmonary vascular
diseases [17,57–61]. Mutations in RQC genes could result in the accumulation of potential gain-of-function
toxic aggregates that cells have difficulty clearing, a common hallmark of degenerative diseases. In support of
this notion, VCP mutations (e.g. A232E and R155H) are associated with diseases characterized by protein
inclusion bodies including inclusion body myopathies, Paget’s disease of the bone, ALS, and FTD [62].
Furthermore, VCP is implicated in the disaggregation of tau fibrils, and a VCP mutation (D395G) is associated
with vacuolar tauopathy reminiscent of AD [57,63]. Patients with pathogenic VCP mutations exhibit TDP-43
neuropathology including TDP-43+ inclusion bodies and accumulation of TDP-43 in the cytoplasm [58,64].
Importantly, a transgenic mouse model expressing either VCP-R155H or VCP-A232E exhibits aberrant cyto-
plasmic TDP-43 localization [65]. Additionally, expression of disease-associated VCP mutations including
A232E or R155H in human SH-SY5Y cells [64] or mouse cortical neurons [66], recapitulates these TDP-43
neuropathology phenotypes. Furthermore, exogenous expression of the VCP-R155H homolog VCP-R152H in a
Drosophila model also causes aberrant TDP-43 localization to the cytoplasm [66]. Interestingly, a genetic
screen in Drosophila identified Znf598 as a genetic modifier enhancing the progression of C9ORF72-associated
ALS/FTD [67]. Furthermore, an Ltn1 allele identified in a forward genetics screen was also shown to cause neu-
rodegenerative hallmarks in mouse models including accumulation of hyperphosphorylated tau protein [15].
LTN1 mRNA levels are increased in tissues from individuals with Down Syndrome and the Ts65Dn Down
Syndrome mouse model [68–70], and LTN1 is differentially expressed in Huntington’s disease patient samples
[71]. Recessive loss-of-function mutations in Nemf result in deficits in motor function and lifespan as well as
key hallmarks of progressive neuromuscular and neurological degeneration in mice [16]. Furthermore, pedigree
analysis from seven families identified specific NEMF alleles that phenocopy mouse models [16]. Pedigree ana-
lysis of a family with ataxia and dystonia phenotypes implicated GTPBP2 alleles in their disease pathology [72],
and Gtpbp2-null mouse models display increased neuronal death [22]. Thus, mutations in the genes that
encode numerous proteins that play key roles in translation quality control pathways including RQC are impli-
cated in neurological and degenerative disease phenotypes.
In the realm of SG proteins, multiple studies have implicated G3BP1 in the pathogenesis of several types of

cancer, cardiovascular diseases, and nervous system disease [61]. G3BP1 knockout is associated with an ataxia-
like phenotype in mice [73]. Furthermore, G3BP1 is up-regulated at the mRNA level in prefrontal cortex
samples from Huntington’s disease patients and is increased at the protein level in cortex and hippocampus
samples of the R6/2 Huntington’s disease mouse model [74]. SG protein-encoding genes including G3BP1,
G3BP2, CAPRIN1, and UBAP2L are genetically implicated in neurodevelopmental diseases and further analysis
showed these variants decreased SG formation in cells treated with arsenite [75]. CAPRIN1 haploinsufficiency
has been identified in patients with language impairment, ADHD, and ASD and impaired neuronal organiza-
tion along with abnormal neuronal firing [76]. Pedigree analysis of two families have associated CAPRIN1
mutations with aberrant protein aggregation and early onset ataxia [77]. Genetic mutations in GCN2 are
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primarily implicated in pulmonary diseases such as pulmonary veno-occlusive disease [60] and pulmonary
capillary hemangiomatosis [59]. However, one study identified that Gcn2 down-regulation may alleviate neur-
onal plasticity and memory deficits in an AD mouse model [78]. Together, the detrimental effects of mutations
in both RQC factors and SG proteins stresses the importance of these pathways in the maintenance of protein
homeostasis and cellular health.

Conclusion
The interconnection between the RQC pathway and SGs is an emerging field linking cellular mechanisms of
proteostasis. However, many unanswered questions remain. Human genetics supports an important role for
VCP and other RQC factors in cellular and organism health, yet, the mechanisms by which VCP mediates
nascent protein degradation, SG assembly, and SG disassembly must be further explored. Beyond this, it is
unknown whether ribosome collisions trigger SG formation. Understanding whether and how ribosome colli-
sions lead to SG formation may inform our knowledge of the balance between RQC, the ISR, and cell fate.
Finally, the mechanisms and outcomes of ubiquitinated 40S subunits in the context of both RQC and ISR acti-
vation or SG formation must be further studied. Further elucidation of 40S ribosome regulation will be critical
in deciphering mechanisms of ribosome recycling and recovery from stress. Overall, there is significant inter-
play between the RQC pathway and SG regulation. Further study of these connections holds promise for unco-
vering novel mechanisms of proteostasis and stress resilience in health and disease.

Perspectives
• Understanding the interconnections between the RQC pathway and SG regulation is critical

for improving our knowledge of proteostasis and stress adaptation.

• RQC proteins regulate SG dynamics via activation of a major stress signaling pathway
upstream of SG formation, contribute to SG mRNA and protein composition, and drive SG
disassembly.

• Further investigation of how RQC factors regulate SGs will likely identify therapeutic targets
for neurological and degenerative diseases and give further insight into how the cell maintains
proteostasis.
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SGs, stress granules; USP10, ubiquitin specific peptidase 10; VCP, valosin-containing protein.
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